Interdigitated electrochemical gas generator

Chemistry: electrical and wave energy – Apparatus – Electrolytic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S271000, C204S278000, C204S283000

Reexamination Certificate

active

06824656

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an electrochemical gas generator for producing a controlled amount of gas and having improved gas generating efficiency and improved response time.
BACKGROUND OF THE INVENTION
Known gas generators generally include permeation-tube calibrators and electrolytic calibrators. Calibrators are typically used to calibrate monitors for determining the safe or unsafe conditions of a potentially hazardous gaseous environment, but may also be used to calibrate instruments for determining a concentration of any gaseous stream. For obvious reasons, reliability and accuracy of calibrating these monitors and instruments are generally very important functions.
Permeation-tube calibrators typically utilize a sealed tube containing the gaseous material of interest. The tube is sealed with a membrane and the gas in the tube is usually maintained in a liquid state. Because the membrane may be permeable to a wide range of substances, molecules of the contained gas may dissolve and diffuse through the membrane into the surrounding atmosphere. Although precise and accurate concentrations of specific gases may be generated by this method, disadvantages of permeation-tube calibrators include a non-adjustable gas concentration, limited portability, and limited useful life. A further disadvantage is that gas is constantly being generated and may present a toxic hazard. A further disadvantage of permeation-tube calibrators includes temperature sensitivity, whereby changing temperatures may negatively affect accuracy of gas generation and response time.
Electrolytic calibrators typically generate pure gas by passing an electric current through a reagent electrolyte solution. The gas generated escapes as bubbles from the solution and is dispersed in a gas stream to form a gas mixture of known concentration. The size or quantity of bubbles produced, however, are often difficult to control and may undesirably lead to a lack of stability and sensitivity of the electrolytic calibrator.
U.S. Pat. No. 4,460,448 to Wolcott (“Wolcott”) relates to an invention for producing mixtures of known concentrations of oxidizing or reducing gases. Wolcott provides an electrochemical cell having a first electrode, an oxidizing or reducing gas generating electrode, an electrolyte providing the ions that make up the oxidizing or reducing gases, and a membrane in between and in contact with the electrolyte and gas generating electrode for controlling the flow of electrolyte and filtering desirable ions to the gas generating electrode. The electrochemical cell further includes a porous membrane in contact with the gas generating electrode for minimizing the thickness of electrolyte solution around the gas generating electrode and, secondarily, for regulating the flow of gas released from the electrode.
U.S. Pat. No. 5,395,501 to Rohrbacker et al. (“Rohrbacker”) relates to an electrochemical cell having a gas generator. The gas generator includes a first electrode, a gas generating electrode, an electrolyte fluid, and a membrane that is permeable to gas for permitting gas to diffuse through it but impermeable to the electrolyte for preventing a loss of fluid. The gas generator provides membranes on several sides of the generator such that, in any orientation, undesirable bubbles that form from the gas generating electrode may vent.
A disadvantage of both Wolcott and Rohrbacker is that they require a membrane for controlling or regulating the bubbles produced from the gas generating electrode. Diffusing gas through a membrane increases the time to generate gas and undesirably affects a gas generator's efficiency. In addition, both Wolcott and Rohrbacker use another membrane for electrolyte to pass through before reaching the gas generating electrode. This also increases the time for the gas generator to respond and further decreases efficiency. Moreover, the references disclose electrochemical gas generators having numerous components in order to function properly, thereby increasing cost.
What is desired, therefore, is to provide an electrochemical gas generator where the gas being generated may be regulated. What is also desired is to provide a gas generator that minimizes the formation of bubbles. What is further desired is an efficient gas generator having improved response time and temperature stability.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide an electrochemical gas generator having improved sensitivity and efficiency.
Accordingly, it is an object of the invention to provide an electrochemical gas generator having improved temperature stability.
It is another object of the invention to provide an electrochemical gas generator that minimizes the gap between electrodes so as to improve conductivity and increase gas generation efficiency.
It is still another object of the invention to provide an electrochemical gas generator having a solid state electrolytic material for use as an electrolyte.
Still another object of the invention is to provide an electrochemical gas generator having a reservoir for wetting the electrolytic material.
Still another object of the invention is to provide an electrochemical gas generator that deters flooding of the electrodes.
It is yet another object of the invention to provide a method for making an electrochemical gas generator in accordance with the invention.
It is still another object of the invention to provide a method for regulating an electrochemical gas generator.
Still a further object of the invention is to provide a method for wetting the electrolytic material of the electrochemical gas generator
These and other objects of the invention are achieved by an electrochemical gas generator including a substrate for providing a surface for electrode deposition, a first electrode deposited on the surface for providing an electrical connection with a conducting medium, a second electrode deposited on the substrate for generating a gas, and a plurality of members extending from at least one side of the first electrode placed alternately with a plurality of extensions protruding from at least one side of the second electrode for improving generator efficiency.
In addition, the electrochemical gas generator may include an electrolytic material for use as an electrolyte for providing an electrical connection between the electrodes. The electrolytic material may be in a solid state or liquid state. If the electrolytic material is in a solid state, the electrochemical gas generator may further include a reservoir containing a solution for wetting the electrolytic material to maintain electrical connection between the electrodes through ionic conductivity.
Moreover, the electrodes need only include a plurality of alternately placed members or extensions in electrical contact with one another. Other than this one requirement, the electrodes may have a variety of sizes, shapes, or other physical characteristics. The electrodes may be extending in a generally horizontal, vertical, or circular fashion so long as electrical contact is maintained for generating gas.
When a solution is used to wet the electrolytic material, flooding may be an undesirable side effect. In another embodiment of the invention, it is an object to further include a coating to reduce or prevent flooding. The coating may be a hydrophobic material, such as Teflon.
In another aspect of the invention, it is an object to provide a method for making an electrochemical gas generator. The method includes providing a substrate, depositing a first and a second electrode on the substrate for generating a gas, and interdigitating the electrodes for improving the electrical contact between them. Interdigitating the electrodes further includes extending a plurality of members and extensions from at least one side of first and second electrodes, respectively, and placing them in an alternating fashion with one another.
In another aspect, the method may also include placing an electrolytic material in contact with both the first and second electrodes fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interdigitated electrochemical gas generator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interdigitated electrochemical gas generator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interdigitated electrochemical gas generator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3319134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.