Plant husbandry – Process
Reexamination Certificate
2001-01-02
2003-10-14
Poon, Peter M. (Department: 3643)
Plant husbandry
Process
Reexamination Certificate
active
06631585
ABSTRACT:
BACKGROUND OF INVENTION
This application is related to U.S. disclosure document No. 468,068, filed Jan. 27, 2000.
My present invention generally relates to intercropping of commercial plants. More specifically, my invention is a process by which legumes such as soybeans are alternated in rows with wild species and/or totally domesticated species such as buckwheat or corn.
My invention in the preferred embodiment and best mode is intended for commercial machine-driven agricultural methods. It is an advantage economically that my method incorporates the commercially successful conservation tillage system in the present United States. This is especially true in the Midwestern and prairie states. However, methods using hand implements for smaller suburban or urban plots with, for example, vegetable gardens are also within the scope of my invention.
A legume is a plant whose roots form an association with soil bacteria which capture and fix atmospheric nitrogen (N
2
). These plants generally form nitrogen fixing nodules on their roots under appropriate growing conditions. Atmospheric nitrogen N
2
cannot be used by crops, even though the atmosphere is approximately 70 to 80% nitrogen in this form. Fortunately, nodules on legume roots can change N
2
to nitrogenous compounds, which can be absorbed by crops through the soil. In the United States, farmers plan soybeans for nitrogen fixing, as well as for forage and commercial purposes. However, other nitrogen fixing plants, known generically in the industry as ‘green manure’ (such as buckwheat), are also satisfactory.
Use of legumes to replenish soil nitrogen has been well known for centuries by those well versed in the agricultural art. Similarly, it has long been known that corn and soybeans successfully grow together under certain conditions, and that soybeans prevent rapid depletion of soil nutrients by corn.
My method for intercropping also incorporates the above described ecological benefits of intercropping a commercially successful annual legume such as soybeans, and a second commercial annual grain-crop such as corn. “Intercropping” is generally defined among farmers and agricultural scientists as: the planting of a fast growing crop between rows of a slow growing crop.
My method in its best mode need not include pesticides and herbicides to obtain healthy plants. Instead, my method in which corn and soybeans are planted at approximately the same time, insures effective ground cover and erosion resistance, in addition to grain production and soil enrichment. In the prior art soybeans, which can also be a cash crop, are generally plowed into the soil at the first frost. There they remain to decompose and release usable nitrogenous compounds in the soil for the next series of crops.
Using my improved method, there is increased drought resistance through an effective ground cover and subsoil root network, as well as an effective moisture canopy and windbreak. Moreover, my method provides a crucial development period for both soybean and corn seedlings through a microclimate effect. The fixation.of atmospheric nitrogen N
2
by legumes also benefits associated plants.
My process differs in that although the soybean pods are harvested early in the growing seasons, the roots and stems are left intact to provide ground cover. There also remains a subsoil root retention system during the winter months and following spring planting season.
Crops such as corn and potatoes benefit from this approach, as long as planting time is properly synchronized with that of the soybeans. The young plants cling to soybean residues and provide an anti-erosion network.
There are prior art approaches to planting annual grain crops in a predetermined fashion in one growing area. U.S. Pat. No. 5,140,917 (Swanson) describes a method and apparatus for seeding agricultural crops. In this method, seeds are placed in residue free rows which are closed aligned and associated with bands of deeply placed fertilizer. The plants from each seed are claimed to access more than one deep band of fertilizer. There is no intercropping component to Swan's model, however European Application 0132521 (Hilmer) describes intercropping with two or more crops on one piece of land per seasonal growing year. He uses the grass/grain cluster/per row or a modular cluster row planter upon a slope contour.
U.S. Pat. No. 4,084,522 (Younger) describes a method by which soybean seeds are sown into a standing grain crop (e.g. wheat). When the grain crop is ripe, it is harvested by a combine at a height which is slightly greater than the height of the partially grown soybeans.
Unlike my process, however, in Younger's model the wheat is planted first, while corn and soybeans are planted considerably later during the same growing season.
U.S. Pat. No. 6,009,955 (Tarver III) is based upon the size and shape of furrows created by a modified harvesting machine. The planter creates these furrows just prior to planting or during the planting season.
Koch described corn planted in 30 inch rows with application of insecticides and liquid nitrogen fertilizer. There is a legume ground-cover such as vetch or clover. According.to this report, clover did not demonstrate potential as a perennial cover crop. Phillip Koch, “Legume Cover Crops for No-Till Corn” in J. F. Power, THE ROLE OF LEGUMES IN CONVERSATION TILLAGE SYSTEMS (1984).
Decker et al. describes winter legume cover crops which were seeded after fall corn harvests, and which were allowed to grow until corn planting the following spring. Results indicated that fall-seeded legumes can at least partially replace artificial nitrogen fertilizers for maximum corn yields. A. M. Decker et al., “Fall Seeded Legumes' Nitrogen Contributions to No-Till Corn Production,” in J. F. Power, supra.
Holderbaum reported results with legume cover crops in which legumes were grown prior to corn, but later during the same growing season. In this model the legumes were clover and ryegrass. According to this investigation, subsequent corn grain yields were highest when the cover crop was not removed. J. F. Hauderbaum et al., “Forage contributions for winter legume cover crops in no-till crop production,” in J. F. Power, supra.
Scott and Burt reported intercropping red clover into corn seedlings when the corn seedlings were approximately six to twelve inches high. The scientists applied chemical herbicides to the seedlings during this investigation. According to Scott and Burt, good crops were consistently obtained by cultivating corn in a 30 inch row. Intercropping occurred when corn seedlings were approximately 12 inches in height. High corn yields consistently occurred following the plowdown of one year of red clover hay.
Scott and Burt concluded that red clover or other legume establishment by intercropping into corn might become a beneficial management approach for nitrogen replenishment, organic matter addition and reduced erosion. T. W. Scott and Robert F. Burt, “Use of Red Clover in Corn Polyculture Systems,” in J. F. Power, supra.
Paudey and Pendleton reported the planting of corn seed in 1.5 meter rows with corn seedlings spaced approximately 17 centimeters apart. Three rows of soybeans were planted between single rows of corn. The investigators applied herbicides and pesticides to the seedlings during the experiments. Forty-two days after planting, the two most exterior soybean rows were ploughed into the cornrows in a traditional ‘hilling up’ procedure. R. K. Paudey and J. W. Pendleton, “Soybeans as a Green Manure in a Maize Intercropping System,” EXPERIMENTAL AGRICULTURE 22:178-85 (1986).
Eadie et al. reported the effect of cereal cover crops upon weed control. The investigators hand planted cereal seed within plots which were approximately 2.3 meters wide and 8.0 meters long. The rows were approximately 0.75 meter equidistantly spaced. The investigators seeded the cereal cover crops immediately after the ridging cultivation at the 11-12 leave stage of cornplants.
According to the Eadie report, corn grain yields remained unchanged by cover c
Gellner Jeffrey L.
Naumann Adrienne B.
Poon Peter M.
LandOfFree
Intercropping process does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intercropping process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intercropping process will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156277