Interconnect traffic tracking

Telephonic communications – With usage measurement – Call traffic recording by computer or control processor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S229000, C379S114030

Reexamination Certificate

active

06298123

ABSTRACT:

TECHNICAL FIELD
The present invention relates to methods and systems for analyzing call specific data records for interconnect traffic between different carriers' portions of a telecommunication network, in order to allow one carrier to analyze the customer base and traffic patterns of the other carrier.
Acronyms
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Asynchronous Digital Subscriber Line (ADSL)
ANswer Message (ANM)
Automatic Message Accounting (AMA)
Call Detail Record (CDR)
Calling Party Number (CPN)
Carrier Identification Code (CIC)
Centi-Call Seconds (CCS)
Central Office (CO)
Competitive Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Common Language Location Identifier (CLLI)
Customer Record Information System (CRIS)
Destination Point Code (DPC)
End Office (EO)
Global Title Translation (GTT)
Initial Address Message (IAM)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP or ISUP)
Inter-exchange Carrier (IXC)
Internet Service Provider (ISP)
Landing Zone (LZ)
Line Identification DataBase (LIDB)
Local Area Network (LAN)
Local Exchange Carrier (LEC)
Loop Maintenance Operations Systems (LMOS)
Message Signaling Unit (MSU)
Message Transfer Part (MTP)
Minutes of Use (MOU)
Mobile Switching Center (MSC)
Multi-Dimensional DataBase (MDDB)
Numbering Plan Area (NPA)
Online Analytical Processing (OLAP)
Origination Point Code (OPC)
Operations, Maintenance Application Part (OMAP)
Personal Communication Service (PCS)
Personal Computer (PC)
Private Branch Exchange (PBX)
Public Switching Telephone Network (PSTN)
Regional Bell Operating Company (RBOC)
Release Complete Message (RLC)
Release Message (REL)
Service Switching Point (SSP)
Signaling Link Selection code (SLC)
Signaling System 7 (SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Structured Query Language (SQL)
Subsystem Number (SSN)
Transaction Capabilities Applications Part (TCAP)
Wide Area Network (WAN)
BACKGROUND ART
Recent legislative and regulatory changes have created a more open service provider environment in the telecommunications industry. In this new environment, more and more companies are offering local exchange services as competitive local exchange carriers (CLECs), that is to say, entering the local market in direct competition with the Regional Bell Operating Company (RBOC) or independent company serving as the incumbent local exchange carrier (LEC). The LECs also face competition in a number of other forms. For example, many wireless services compete with the LEC, at least to some extent. Also, many large corporations operate their own private networks, which siphons off business traffic that otherwise would pass through a LEC's network.
A CLEC, for example, may lease certain unbundled elements of the LEC's network at reduced rates for resale. The CLEC may lease an unbundled port on an end office switch, as a point of access to the LEC's switch and the subscriber loops. The CLEC then connects its own switch network to the unbundled port. Alternatively, the CLEC may operate its own independent switching facilities and loop plant. In either case, the regulatory requirements mandate that the CLEC facilities must be integrated into the public switching telephone network (PSTN) in a seamless manner from the customer's perspective. As such, the customers must be able to make and receive telephone calls using existing dialing patterns, without any apparent distinction in processing as a result of service through the CLEC. The regulatory environment therefore places certain burdens on the incumbent LEC, to provide an efficient interconnection to the CLEC's facilities and to provide mechanisms for compensation between the parties for calls interconnected between the two carriers' networks.
A cellular service provider typically operates a number of switching offices referred to as mobile switching centers (MSCs). The MSCs connect to offices of the LEC network, for local services. The MSCs also connect to a point of presence of an IXC, for long distance and international services. Each MSC connects to a number of base stations. The base stations provide two-way radio communications with wireless stations of the customers. Today, most of the wireless stations are mobile stations, however, a number of cellular service providers are now offering wireless service to fixed locations. A transceiver at the fixed location provides the wireless communications with one of the base stations and provides an on-premises interface to the customer's telephone wiring. To the customer's telephone equipment, the interface often appears like a normal telephone line from the LEC. This fixed location service is sometimes identified as a “wireless loop” or “wireless drop” service.
Many large businesses operate private networks. In such a case, the business entity owns and operates one or more private branch exchanges (PBX). These exchanges may connect to offices of a LEC or CLEC, but only for local off-net traffic. The business usually contracts with an interexchange carrier (IXC), both for trunk circuits between the business' private exchanges and for long distance and international telecommunications services. The private exchanges connect directly to the IXC's equipment and bypass the local carriers.
Interconnect Traffic is generally defined as any calls which are routed and “handed-off” from one carrier to another. This may take the form of Independent, Interexchange Carrier, or Cellular service providers directing traffic to or receiving traffic from a local switch of the LEC. Typically, the LEC must provide tandem capacity and trunking to one or more exchanges of any of these other carriers, to carry the interconnect traffic between the carriers' networks.
Providing this capacity to the other carriers places certain burdens on the LEC. The other carriers, however, actually use this capacity in no small part to take business away from the LEC. The CLEC is a direct competitor, who attempts to design his business plan to take as much premium traffic as possible from the LEC. The cellular providers' wireless loop services also are a form of direct competition. In addition, the sale of many mobile services helps to depress sales of a number of services by the LEC, such as second line services. Finally, the bypass of the LEC by the IXC in cooperation with private networks places the IXC in competition with the LEC for interconnection to the private networks. The interconnection traffic, particularly to large businesses, often is one of the most profitable classes of local telephone service.
For revenue prediction purposes and for purposes of regulatory proceedings, the incumbent LEC tries to determine the erosion of its customer base by the business practices of its competitors. At present, the incumbent LEC has no way to determine the total market “actuals” of the customer base of any of the other potentially competing carriers. The LEC also has no way to track or forecast market gains by the other carriers. Incumbent local service providers today are in an unfortunate position where they are unable to effectively determine the magnitude of their own losses to these various forms of competition.
A number of techniques have been developed for monitoring operations of the public switching telephone network. While these prior techniques may be effective for some purposes, they have not proven effective for analyzing a competitor's traffic. To complete the understanding of the background of the invention, it may be helpful to briefly consider some of the prior techniques for network monitoring.
U.S. Pat. No. 5,475,732 Pester describes an SS7 Network Preventative Maintenance System for detecting potential SS7 and switched network troubles, automatically

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interconnect traffic tracking does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interconnect traffic tracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interconnect traffic tracking will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598749

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.