Interconnect traffic analysis

Telephonic communications – With usage measurement – Call traffic recording or monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S112010, C379S112060, C379S114010, C379S114280, C379S115010, C379S121010, C379S134000, C379S032010

Reexamination Certificate

active

06721405

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method and system for analyzing call specific data records for traffic between different carriers' portions of a telecommunication network, in order to reconcile accounting information regarding such traffic and/or to identify significant traffic patterns for engineering purposes.
Acronyms
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Asynchronous Digital Subscriber Line (ADSL)
ANswer Message (ANM)
Automatic Message Accounting (AMA)
Call Detail Record (CDR)
Calling Party Number (CPN).
Carrier Identification Code (CIC)
Centi-Call Second (CCS)
Central Office (CO)
Competitive Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Common Language Location Identifier (CLLI)
Customer Record Information System (CRIS)
Destination Point Code (DPC)
End Office (EO)
Global Title Translation (GTT)
Initial Address Message (IAM)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP or ISUP)
Inter-exchange Carrier (IXC)
Internet Service Provider (ISP)
Landing Zone (LZ)
Line Identification DataBase (LIDB)
Local Area Network (LAN)
Local Exchange Carrier (LEC)
Local Access and Transport Area (LATA)
Loop Maintenance Operations Systems (LMOS)
Message Signaling Unit (MSU)
Message Transfer Part (MTP)
Multi-Dimensional DataBase (MDDB)
Numbering Plan Area (NPA)
Online Analytical Processing (OLAP)
Origination Point Code (OPC)
Operations, Maintenance Application Part (OMAP)
Percent of Inter-LATA Usage (PIU)
Percent of Local Usage (PLU)
Personal Computer (PC)
Public Switching Telephone Network (PSTN)
Release Complete Message (RLC)
Release Message (REL)
Service Switching Point (SSP)
Signaling Link Selection code (SLC)
Signaling System 7 (SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Structured Query Language (SQL)
Transaction Capabilities Applications Part (TCAP)
Wide Area Network (WAN)
BACKGROUND ART
Recent legislative and regulatory changes have created a more open service provider environment in the telecommunications industry. In this new environment, more and more companies are offering local exchange services as competitive local exchange carriers (CLECs), that is to say, entering the local market in direct competition with the Regional Bell Operating Company (RBOC) or independent company serving as the incumbent local exchange carrier (LEC).
A CLEC may lease certain unbundled elements of the LEC's network at reduced rates for resale. For example, the CLEC may lease an unbundled port on an end office switch, as a point of access to the LEC's switch and the subscriber loops. The CLEC then connects its own switch network to the unbundled port. Alternatively, the CLEC may operate its own independent switching facilities and loop plant. In either case, the regulatory requirements mandate that the CLEC facilities must be integrated into the public switching telephone network (PSTN) in a seamless manner from the customer's perspective. As such, the customers must be able to make and receive telephone calls using existing dialing patterns, without any apparent distinction in processing as a result of service through the CLEC. The regulatory environment therefore places certain burdens on the incumbent LEC, to provide an efficient interconnection to the CLEC's facilities and to provide mechanisms for compensation between the parties for calls interconnected between the two carriers' networks.
Interconnect Traffic is generally defined as any calls which are routed and “handed-off” from one carrier to another. This may take the form of Independent, Interexchange Carrier, or Cellular service providers directing traffic to or receiving traffic from a local switch of the LEC. Typically, the LEC must provide tandem capacity and trunking to one or more exchanges of any of these other carriers, including the CLECs, to carry the interconnect traffic between the carriers' networks. In particular, the CLECs demand that the LEC provide sufficient capacity to minimize blockages on calls to and from the CLEC networks.
Also, disputes arise over the amount and direction of such traffic, for example, as it relates to billing and compensation issues. Network interconnection, required under Section 251(c)(2) of the Telecommunications Act, requires that charges for the transport and termination of traffic provide for the mutual and reciprocal recovery by each carrier of its costs associated with transport and termination. As part of the compensation process, each party declares jurisdictional calling factors for the traffic, such as the Percent of Inter-LATA Usage (PIU) and the Percent of Local Usage (PLU), in an attempt to separate the billing of the reciprocal compensation charges for local traffic from the switched access charges for non-local traffic. The issues and problems associated with reciprocal compensation payments and PLU/PIU factoring are growing, as traffic volumes increase.
For this compensation system, one local carrier pays a charge to the other local carrier for each call originating in the one carrier's network and terminated in the other carrier's network. Reciprocal charges are accumulated for terminations in both directions and offset each other. The carrier originating more calls into the other carrier's network pays the terminating carrier the difference in the charges.
Incumbent local service providers today are in an unfortunate position where they are unable to effectively measure usage or quality of service to CLECs and consequently cannot validate the associated terminating charges. Any inaccuracies in the CLEC's declaration of the jurisdictional calling factors results in a significant increase in the incumbent LEC's expense associated with CLEC interconnection.
The theory underlying this portion of the Act is that the accurately reported traffic should be substantially equal in both directions, from the LEC to the CLEC and from the CLEC to the LEC, therefore typically any reciprocal compensation between the carriers should be relatively low. This theory assumes that the CLEC customers are predominantly normal telephone customers, who make about as many calls as they receive and the CLECs accurately report jurisdictional factors.
Adding end offices, specialized switching modules, trunks, tandem offices and the like to meet new demands such as those of CLEC interconnection requires considerable expense. Accurate engineering, to minimize cost and yet provide effective service to the various customers, becomes ever more essential. To provide effective engineering, it is necessary that the LEC understand the traffic involved. Such understanding requires accurate and complete traffic measurement. Accurate information also is necessary to resolve disputes, for example with the CLECs over compensation, service quality and the like.
Today, there is no easy way to accurately measure traffic between two carriers' networks, for example, so as to accurately identify the true point of origin for each call terminated within a CLEC network. For example, the LEC should not pay any kind of termination charges to the CLEC for calls that passed through the LEC's network but did not actually originate from the LEC's network, for example inter-LATA calls coming in through an IXC network not directly connected to the CLEC network. Currently, the CLEC accumulates records for calls terminated in the CLEC's network that passed through the LEC's network, without distinguishing point of origin. The LEC must trust the CLEC to bill for however many calls were terminated to them. Clearly, there is a need for a system that enables the LEC to accurately determine what calls routed through the LEC tandem really came from another network or provider.
Also, certain practices o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interconnect traffic analysis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interconnect traffic analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interconnect traffic analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233210

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.