Intercellular adhesion molecule—2 and its binding ligands

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Monoclonal antibody or fragment thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S130100, C424S141100, C424S143100, C424S172100, C514S002600, C514S008100, C514S885000, C530S350000, C530S387100, C530S388200, C530S388220

Reexamination Certificate

active

06511664

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the intercellular adhesion molecule-2 (“ICAM-2”) which is involved in the process through which populations of lymphocytes recognize and adhere to cellular substrates so that they may migrate to sites of inflammation and interact with cells during inflammatory reactions. The present invention additionally relates to ligand molecules capable of binding to ICAM-2 intercellular adhesion molecules, and to uses for the intercellular adhesion molecule, and the ligand molecules.
2. Description of the Related Art
Leukocytes must be able to attach to cellular substrates in order to properly defend the host against foreign invaders such as bacteria or viruses. An excellent review of the defense system is provided by Eisen, H. W., (In:
Microbiology,
3rd Ed., Harper & Row, Philadelphia, Pa. (1980), pp. 290-295 and 381-418). They must be able to attach to endothelial cells so that they can migrate from circulation to sites of ongoing inflammation. Furthermore, they must attach to antigen-presenting cells so that a normal specific immune response can occur, and finally, they must attach to appropriate target cells so that lysis of virally-infected or tumor cells can occur.
Recently, leukocyte surface molecules involved in mediating such attachments were identified using hybridoma technology. Briefly, monoclonal antibodies directed against human T-cells (Davignon, D. et al.,
Proc. Natl. Acad. Sci. USA
78:4535-4539 (1981)) and mouse spleen cells (Springer, T. et al.
Eur. J. Immunol.
2:301-306 (1979)) were identified which bound to leukocyte surfaces and inhibited the attachment related functions described above (Springer, T. et al.,
Fed. Proc.
44:2660-2663 (1985)). The molecules identified by those antibodies were called Mac-1 and Lymphocyte Function-associated Antigen-1 (LFA-1). Mac-1 is a heterodimer found on macrophages, granulocytes and large granular lymphocytes. LFA-1 is a heterodimer found on most lymphocytes (Springer, T. A. et al.
Immunol. Rev.
68:111-135 (1982)). These two molecules, plus a third molecule, p150,95 (which has a tissue distribution similar to Mac-1) play a role in cellular adhesion (Keizer, G. et al.,
Eur. J. Immunol.
15:1142-1147 (1985)).
The above-described leukocyte molecules were found to be members of a related family of glycoproteins (Sanchez-Madrid, F. et al.,
J. Exper. Med.
158:1785-1803 (1983); Keizer, G. D. et al.,
Eur. J. Immunol.
15:1142-1147 (1985)), termed the “CD-18 family” of glycoproteins. This glycoprotein family is composed of heterodimers having one alpha chain and one beta chain. Although the alpha chain of each of the antigens differed from one another, the beta chain was found to be highly conserved (Sanchez-Madrid, F. et al.,
J. Exper. Med.
158:1785-1803 (1983)). The beta chain of the glycoprotein family (sometimes referred to as “CD18”) was found to have a molecular weight of 95 kd whereas the alpha chains were found to vary from 150 kd to 180 kd (Springer, T.,
Fed. Proc.
44:2660-2663 (19853). Although the alpha subunits of the membrane proteins do not share the extensive homology shared by the beta subunits, close analysis of the alpha subunits of the glycoproteins has revealed that there are substantial similarities between them. Reviews of the similarities between the alpha and beta subunits of the LFA-1 related glycoproteins are provided by Sanchez-Madrid, F. et al., (
J. Exper. Med.
158:586-602 (1983);
J. Exper. Med.
158:1785-1803 (1983)).
A group of individuals has been identified who are unable to express normal amounts of any member of this adhesion protein family on their leukocyte cell surface (Anderson, D. C. et al.,
Fed. Proc.
44:2671-2677 (1985); Anderson, D. C. et al.,
J. Infect. Dis.
152:668-689 (1985)). Lymphocytes from these patients displayed in vitro defects similar to normal counterparts whose CD-18 family of molecules had been antagonized by antibodies. Furthermore, these individuals were unable to mount a normal immune response due to an inability of their cells to adhere to cellular substrates (Anderson, D. C. et al.,
Fed. Proc.
44:2671-2677 (1985); Anderson, D. C. et al.,
J. Infect. Dis.
152:668-689 (1985)). These data show that immune reactions are mitigated when lymphocytes are unable to adhere in a normal fashion due to the lack of functional adhesion molecules of the CD-18 family.
Thus, in summary, the ability of leukocytes to maintain the health and viability of an animal requires that they be capable of adhering to other cells (such as endothelial cells). This adherence has been found to require cell-cell contacts which involve specific receptor molecules present on the cell surface of the leukocytes. These receptors enable a leukocyte to adhere to other leukocytes or to endothelial, and other non-vascular cells. The cell surface receptor molecules have been found to be highly related to one another. Humans whose leukocytes lack these cell surface receptor molecules exhibit chronic and recurring infections, as well as other clinical symptoms including defective antibody responses.
Since leukocyte adhesion is involved in the process through which foreign tissue is identified and rejected, an understanding of this process is of significant value in the fields of organ transplantation, tissue grafting, allergy and oncology.
SUMMARY OF THE INVENTION
The present invention relates to Intercellular Adhesion Molecule-2 (ICAM-2) as well as to its functional derivatives. The invention additionally pertains to antibodies and fragments of antibodies capable of inhibiting the function of ICAM-2, and to other inhibitors of ICAM-2 function. The invention additionally includes diagnostic and therapeutic uses for all of the above-described molecules.
In detail, the invention includes the intercellular adhesion molecule ICAM-2, or a functional derivative thereof, substantially free of natural contaminants.
The invention further pertains to ICAM-2 which contains at least one polypeptide selected from the group consisting of:
(a) -S-S-F-G-Y-R-T-L-T-V-A-L-;
(b) -D-E-K-V-F-E-V-H-V-R-P-K-;
(c) -G-S-L-E-V-N-C-S-T-T-C-N-;
(d) -H-Y-L-V-S-N-I-S-H-T-D-V-;
(e) -S-M-N-S-N-V-S-V-Y-Q-P-P-;
(f) -F-T-I-E-C-R-V-P-T-V-E-P-;
(g) -G-N-E-T-L-H-Y-E-T-F-G-K-;
(h) -T-A-T-F-N-S-T-A-D-R-E-D-;
(i) -H-R-N-F-S-C-L-A-V-L-D-L-;
(j) -M-V-I-I-V-T-V-V-S-V-L-L-;
(k) -S-L-F-V-T-S-V-L-L-C-F-I-; and
(l) -M-G-T-Y-G-V-R-A-A-W-R-R-.
The invention also provides a recombinant or synthetic. DNA molecule capable of encoding, or of expressing, ICAM-2 or a functional derivative thereof.
The invention additionally provides an antibody, and especially a monoclonal antibody, capable of binding to a molecule selected from the group consisting of ICAM-2, and a functional derivative of ICAM-2.
The invention also provides a hybridoma cell capable of producing the above-described monoclonal antibody.
The invention includes a method for producing a desired hybridoma cell that produces an antibody which is capable of binding to ICAM-2, or its functional derivative, which comprises the steps:
(a) immunizing an animal with an imunogen selected from the group consisting of: a cell expressing ICAM-2, a membrane of a cell expressing ICAM-2, ICAM-2, ICAM-2 bound to a carrier, a peptide fragment of ICAM-2, and a peptide fragment of ICAM-2 bound to a carrier,
(b) fusing the spleen cells of the animal with a myeloma cell line,
(c) permitting the fused spleen and myeloma cells to form antibody secreting hybridoma cells, and
(d) screening the hybridoma cells for the desired hybridoma cell that is capable of producing an antibody capable of binding to ICAM-2.
The invention also provides a method for treating inflammation resulting from a response of the specific defense system in a mammalian subject which comprises providing to a subject in need of such treatment an amount of an anti-inflammatory agent sufficient to suppress the inflammation; wherein the anti-inflammatory agent is selected from the group consisting of: an antibody capable of binding to ICAM-2; a fragment of an antib

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intercellular adhesion molecule—2 and its binding ligands does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intercellular adhesion molecule—2 and its binding ligands, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intercellular adhesion molecule—2 and its binding ligands will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.