Colloid systems and wetting agents; subcombinations thereof; pro – Continuous or semicontinuous solid phase – The solid phase contains organic material
Reexamination Certificate
2000-05-26
2001-06-05
Cain, Edward J. (Department: 1714)
Colloid systems and wetting agents; subcombinations thereof; pro
Continuous or semicontinuous solid phase
The solid phase contains organic material
Reexamination Certificate
active
06242500
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to intercalated layered materials, and exfoliates thereof, manufactured by sorption (adsorption and/or absorption) of one or more intercalant compounds selected from (a) long chain (C
6
+) monomeric, oligomeric or polymeric intercalant compounds; or (b) aromatic ring-containing monomeric, oligomeric or polymeric intercalant compounds. The intercalant compounds are intercalated between planar layers of a swellable layered material, such as a phyllosilicate, to expand the interlayer spacing of adjacent layers at least about 5 Angstroms (Å), preferably at least about 10 Å. More particularly, the present invention is directed to intercalates formed with an intercalant compound selected from monomeric, oligomeric or polymeric intercalant molecules that are (a) long chain (C
6
+ alkyl) compounds; or (b) aromatic ring-containing compounds, the intercalant compounds (a) and (b) including a matrix polymer-compatible functionality that is reactive with the matrix polymer melt extending from the intercalant molecule or at a free end (the end not complexed to cations of the interlayer surfaces of the layered material platelets). In accordance with one embodiment, the extending matrix polymer-reactive moiety may be covalently bound on both sides of the functionality, e.g., a reactive alkene or alkyne group that is reactive with the matrix polymer. The intercalant molecules are sorbed on the internal surfaces between adjacent layers of the planar platelets of a layered material, such as a phyllosilicate, preferably a smectite clay. One end of the intercalant molecules that coordinates or complexes to surrounding Na
+
ions on the inner surface of the phyllosilicate platelets connect to the platelet surfaces through an electrostatic attraction, e.g., dipole-dipole complexing, to form rigid columns of the intercalant molecules that extend upwardly, away from the platelet surfaces to provide surprisingly large basal spacings between adjacent phyllosilicate platelets with relatively few intercalant molecules. The other (free) end of the intercalant molecules include (a) C
6
+ alkyl moiety or (b) an aromatic ring, both the (a) and (b) intercalant molecules having a free functional group covalently bonded to the molecule, such as a functionality selected from the group consisting of an amine; a carboxylic acid or its metal salt; a polycarboxylic acid or salt thereof; a hydroxyl; a polyhydroxyl; a carbonyl; an amide; an ether; an ester; a lactam; an aldehyde; a ketone; a lactone; an anhydride; a nitrile; an n-alkyl halide; a pyridine; a pyrrolidone; a free carbon to carbon double bond or triple bond
or —C═C—; and mixtures thereof for better compatibility and reactivity with a matrix material, such as a matrix polymer or organic solvent that the intercalates, or exfoliates thereof are intermixed with for enhanced properties of the matrix material.
Some of such intercalant compounds are commercially available, and others can be synthesized. The adjacent, relatively widely spaced platelets of such intercalates, and the exfoliates thereof, therefore, have a very porous gallery of functionalized long chain (C
6
+ alkyl) and/or functionalized aromatic ring-containing molecules extending away from the inner surface of the clay platelets, resulting in increased sorption (absorption and/or adsorption) of both hydrophilic and hydrophobic molecules by the resulting intercalates and exfoliates thereof; excellent intercalates and exfoliates for combining with melt polymers (matrix thermoplastic and/or thermosetting polymers) for increased mechanical strength; increased oxygen impermeability in films and sheets; increased temperature resistance characteristics; and the like. The long chain (C
6
+ alkyl) and/or aromatic functionalized intercalant molecules expand the interlayer spacing of the phyllosilicate at least about 5 Å, preferably at least about 10 Å, more preferably to at least about 20 Å, and most preferably to at least about 30-45 Å, up to about 100 Å, or disappearance of periodicity.
The intercalated long chain (C
6
+) and/or aromatic ring-containing intercalant monomers, oligomers, and polymers surprisingly form a unique type of intercalate and exfoliate that includes rigid extending columns of long chain (C
6
+ alkyl) and/or aromatic ring-containing intercalant molecules that have the long chain (C
6
+ alkyl) and/or aromatic ring portion of the intercalant molecules covalently bonded to a free matrix polymer-compatible and reactive functionality extending from the intercalant molecule or at a free end of the intercalant that extends upwardly from one platelet surface. The same or different intercalant molecules extending upwardly from an adjacent platelet surface abutt the opposed, extending intercalant molecules at the matrix polymer-compatible functionalities, to hold the adjacent platelets more widely spaced, with fewer intercalant molecules than any intercalate heretofore known.
The resulting intercalates are neither entirely organophilic nor entirely hydrophilic, but a combination of the two; have surprising sorption of hydrophilic and hydrophobic molecules; have surprising compatibility, and reactivity, with combined matrix materials, such as polymers or organic solvents; and easily can be exfoliated and combined as individual platelets with a matrix polymer to form a composite material; or combined with a polar organic solvent carrier matrix material to form a viscous composition having a myriad of uses. The resulting intercalate or exfoliate; or polymer/intercalate or polymer/exfoliated platelet composite materials are useful as plasticizers; for providing increased viscosity and elasticity to thermoplastic and thermosetting polymers, e.g., for plasticizing polyvinyl chloride; for food wrap having improved gas impermeability; for electrical components; for food grade drink containers; for raising the viscosity of polar organic liquids; flame retardation; and for altering one or more physical properties of a matrix polymer, such as elasticity and temperature characteristics, e.g., glass transition temperature and high temperature resistance.
BACKGROUND OF THE INVENTION AND PRIOR ART
It is well known that phyllosilicates, such as smectite clays, e.g., sodium montmorillonite and calcium montmorillonite, can be treated with organic molecules, such as organic ammonium ions, to intercalate the organic molecules between adjacent, planar silicate layers, for bonding the organic molecules with a polymer, for intercalation of the polymer between the layers, thereby substantially increasing the interlayer (interlaminar) spacing between the adjacent silicate layers. The thus-treated, intercalated phyllosilicates, having interlayer spacings of at least about 10-20 Å and up to about 100 Angstroms, then can be exfoliated, e.g., the silicate layers are separated, e.g., mechanically, by high shear mixing. The individual silicate layers, when admixed with a matrix polymer, before, after or during the polymerization of the matrix polymer, e.g., a polyamide—see U.S. Pat. Nos. 4,739,007; 4,810,734; and 5,385,776—have been found to substantially improve one or more properties of the polymer, such as mechanical strength and/or high temperature characteristics.
Exemplary prior art composites, also called “nanocomposites”, are disclosed in published PCT disclosure of Allied Signal, Inc. WO 93/04118 and U.S. Pat. No. 5,385,776, disclosing the admixture of individual platelet particles derived from intercalated layered silicate materials, with a polymer to form a polymer matrix having one or more properties of the matrix polymer improved by the addition of the exfoliated intercalate. As disclosed in WO 93/04118, the intercalate is formed (the interlayer spacing between adjacent silicate platelets is increased) by adsorption of a silane coupling agent or an onium cation, such as a quaternary ammonium compound, having a reactive group which is compatible with the ma
Beal Gary W.
Lan Tie
Liang Ying
Tsipursky Semeon
Amcol International Corporation
Cain Edward J.
Marshall O'Toole Gerstein Murray & Borun
LandOfFree
Intercalates and exfoliates formed with long chain... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intercalates and exfoliates formed with long chain..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intercalates and exfoliates formed with long chain... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2449194