Intercalates and exfoliates formed with hydroxyl-functional;...

Compositions: coating or plastic – Materials or ingredients – Pigment – filler – or aggregate compositions – e.g. – stone,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S416000, C106S417000, C106S483000, C106S484000, C252S391000, C427S220000, C501S141000, C501S145000, C501S148000

Reexamination Certificate

active

06461423

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to intercalated layered materials, and exfoliates thereof, manufactured by sorption (adsorption and/or absorption) of one or more functional monomeric organic compounds between planar layers of a swellable layered material, such as a phyllosilicate or other layered material, to expand the interlayer spacing of adjacent layers to at least about 5 Angstroms (Å), preferably at least about 10 Å. More particularly, the present invention is directed to intercalates having at least two layers of monomeric organic compounds sorbed on the internal surfaces of adjacent layers of the planar platelets of a layered material, such as a phyllosilicate, preferably a smectite clay, to expand the interlayer spacing to at least about 5 Å, preferably at least about 10 Å, more preferably to at least about 20 Å, and most preferably to at least about 30-45 Å, up to about 100 Å, or disappearance of periodicity. The intercalated layered materials preferably have at least two layers of monomeric hydroxyl-functional, polyhydroxyl-functional, or aromatic-functional molecules sorbed on the internal surfaces between adjacent layers of the planar platelets of the layered material, such as a phyllosilicate, preferably a smectite clay. The resulting intercalates are neither entirely organophilic nor entirely hydrophilic, but a combination of the two, and easily can be exfoliated and combined as individual platelets with a polar organic solvent carrier to form a viscous composition having a myriad of uses. The resulting polar organic solvent carrier/intercalate or carrier/platelet composite materials are useful as plasticizers; for providing increased viscosity and elasticity to thermoplastic and thermosetting polymers, e.g., for plasticizing polyvinyl chloride; for food wrap having improved gas impermeability; electrical components; food grade drink containers; particularly for raising the viscosity of polar organic liquids; and for altering one or more physical properties of a matrix polymer, such as elasticity and temperature characteristics, e.g., glass transition temperature and high temperature resistance.
BACKGROUND OF THE ION AND PRIOR ART
It is well known that phyllosilicates, such as smectite clays, e.g., sodium montmorillonite and calcium montmorillonite, can be treated with organic molecules, such as organic ammonium ions, to intercalate the organic molecules between adjacent, planar silicate layers, for bonding the organic molecules with a polymer, for intercalation of the polymer between the layers, thereby substantially increasing the interlayer (interlaminar) spacing between the adjacent silicate layers. The thus-treated, intercalated phyllosilicates, having interlayer spacings of at least about 10-20 Å and up to about 100 Angstroms, then can be exfoliated, e.g., the silicate layers are separated, e.g., mechanically, by high shear mixing. The individual silicate layers, when admixed with a matrix polymer, before, after or during the polymerization of the matrix polymer, e.g., a polyamide—see U.S. Pat. Nos. 4,739,007; 4,810,734; and 5,385,776 —have been found to substantially improve one or more properties of the polymer, such as mechanical strength and/or high temperature characteristics.
Exemplary prior art composites, also called “nanocomposites”, are disclosed in published PCT disclosure of Allied Signal, Inc. WO 93/04118 and U.S. Pat. No. 5,385,776, disclosing the admixture of individual platelet particles derived from intercalated layered silicate materials, with a polymer to form a polymer matrix having one or more properties of the matrix polymer improved by the addition of the exfoliated intercalate. As disclosed in WO 93/04118, the intercalate is formed (the interlayer spacing between adjacent silicate platelets is increased) by adsorption of a silane coupling agent or an onium cation, such as a quaternary ammonium compound, having a reactive group which is compatible with the matrix polymer. Such quaternary ammonium cations are well known to convert a highly hydrophilic clay, such as sodium or calcium montmorillonite, into an organophilic clay capable of sorbing organic molecules. A publication that discloses direct intercalation (without solvent) of polystyrene and poly(ethylene oxide) in organically modified silicates is Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates, Richard A. Vaia, et al.,
Chem. Mater
., 5:1694-1696(1993). Also as disclosed in
Adv. Materials
, 7, No. 2: (1985), pp, 154-156, New Polymer Electrolyte Nanocomposites: Melt Intercalation of Poly(Ethylene Oxide) in Mica-Type Silicates, Richard A. Vaia, et al., poly(ethylene oxide) can be intercalated directly into Na-montmorillonite and Li-montmorillonite by heating to 80° C. for 2-6 hours to achieve a d-spacing of 17.7 Å. The intercalation is accompanied by displacing water molecules, disposed between the clay platelets, with polymer molecules. Apparently, however, the intercalated material could not be exfoliated and was tested in pellet form. It was quite surprising to one of the authors of these articles that exfoliated material could be manufactured in accordance with the present invention.
Previous attempts have been made to intercalate polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and poly(ethylene oxide) (PEO) between montmorillonite clay platelets with little success. As described in Levy, et al.,
Interlayer Adsorption of Polyvinylpyrrolidone on Montmorillonite
, Journal of Colloid and Interface Science, Vol. 50, No. 3, March 1975, pages 442-450, attempts were made to sorb PVP (40,000 average M.W.) between monoionic montmorillonite clay platelets (Na, K, Ca and Mg) by successive washes with absolute ethanol, and then attempting to sorb the PVP by contact with 1% PVP/ethanol/water solutions, with varying amounts of water, via replacing the ethanol solvent molecules that were sorbed in washing (to expand the platelets to about 17.7 Å). Only the sodium montmorillonite had expanded beyond a 20 Å basal spacing (e.g., 26 Å and 32 Å), at 5
+
% H
2
O, after contact with the PVP/ethanol/H
2
O solution. It was concluded that the ethanol was needed to initially increase the basal spacing for later sorption of PVP, and that water did not directly affect the sorption of PVP between the clay platelets (Table II, page 445), except for sodium montmorillonite. The sorption was time consuming and difficult and met with little success.
Further, as described in Greenland,
Adsorption of Polyvinyl Alcohols by Montmorillonite
, Journal of Colloid Sciences, Vol. 18, pages 647-664 (1963), polyvinyl alcohols containing 12% residual acetyl groups could increase the basal spacing by only about 10 Å due to the sorbed polyvinyl alcohol (PVA). As the concentration of polymer in the intercalant polymer-containing solution was increased from 0.25% to 4%, the amount of polymer sorbed was substantially reduced, indicating that sorption might only be effective at polymer concentrations in the intercalant polymer-containing composition on the order of 1% by weight polymer, or less. Such a dilute process for intercalation of polymer into layered materials would be exceptionally costly in drying the intercalated layered materials for separation of intercalate from the polymer carrier, e.g., water, and, therefore, apparently no further work was accomplished toward commercialization.
In accordance with one embodiment of the present invention, intercalates are prepared by contacting a phyllosilicate with a monomeric organic compound having an electrostatic functionality selected from the group consisting of a hydroxyl; a polyhydroxyl; an aromatic functionality; and mixtures thereof.
In accordance with an important feature of the present invention, best results are achieved using the monomeric organic compound, having at least one of the above-defined functionalities, in a concentration of at least about 2%, preferably at leas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intercalates and exfoliates formed with hydroxyl-functional;... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intercalates and exfoliates formed with hydroxyl-functional;..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intercalates and exfoliates formed with hydroxyl-functional;... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2998751

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.