Interbuilding and urban canyon extension solution for global...

Communications: directive radio wave systems and devices (e.g. – Directive – Beacon or receiver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C701S213000

Reexamination Certificate

active

06188353

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to terrestrial navigation and positioning systems. More particularly, the present invention relates to an extended capability global positioning system (GPS) capable of resolving position without access to line-of-sight satellite, pseudolite or cellular telephone signaling.
BACKGROUND OF THE INVENTION
Global positioning system (GPS) navigational systems are often used by military and civilian naval, ground, and airborne vehicles for navigation. GPS receiver units receive positioning signals from a constellation of 24 Navistar satellites deployed in 12-hour orbits about earth and dispersed in six orbital planes at an altitude of 2,200 kilometers. The satellites continuously emit electronic GPS signals (or telemetry) for reception by ground, airborne, or naval receiver units. By receiving GPS signals from four or more satellites, a properly configured receiver unit can accurately determine its position in three dimensions (e.g., longitude, latitude, and altitude).
GPS navigational systems have tremendous benefits over other positioning systems in that these systems do not rely upon visual, magnetic, or other points of reference. However, conventional GPS navigational systems can experience blackout areas or regions when line-of-site is broken with the satellites. Some GPS navigational systems or other navigational systems in use today are nonfunctional in many areas due to signal blockage. For example, personal navigational systems often experience loss of signal when they are operated indoors, in dense urban environments (e.g., urban canyon), next to large buildings, underground, or in other blackout areas. Additionally recent attempts at augmenting GPS for this coverage deficiency has had mixed success and not resulted in a low cost worldwide solution. Additionally, approaches for resolving location through the novel use of cellular phone infrastructures does not currently provide reliable or sufficient discrimination for resolving occupied floor level within a multi-story concrete and metal building. Similarly, the approach of using GPS pseudolites does not solve all coverage problems due to inherent signal distortion, reflection and attenuation again brought on by the use of concrete and metal in many buildings. Furthermore the payback incentives are not clear, resulting in questions of who should pay for the new infrastructure, undermining solution standardization and widespread system implementation and coverage.
Thus, there is a need for a navigational system which not only is less susceptible to blackout areas, but is inherently low cost and having characteristics attracting widespread or worldwide infrastructure support. Further still, there is a need for a low-cost personal location system which can be utilized to determine position indoors. Even further still, there is a need to extend satellite navigation systems so they can be used indoors and in urban canyon environments.
SUMMARY OF THE INVENTION
The present invention relates to a transmitter disposed at a position for use in a positioning system. The transmitter includes a wireless power circuit and a control circuit. The control circuit is coupled to the wireless power circuit. The wireless power circuit provides electric power to the control circuit. The control circuit transmits a limited range positioning signal indicative of the position.
The present invention further relates to a receiver unit for use with a plurality of transmitters. Each transmitter emits a limited range receive position signal indicative of a position of the transmitter. The receiver unit includes a receiver circuit for receiving the limited range receive position signal, a transmitter circuit, and a storage buffer. The storage buffer is coupled to the transmitter circuit. The storage buffer stores an identification code. The transmitter transmits a transmit position signal indicative of the limited range receive position signal and the identification code.
The present invention still further relates to a positioning system receiver including a satellite receiver circuit and an auxiliary receiver circuit. The satellite receiver circuit receives satellite signals and determines a first position in response to the satellite signals. The auxiliary receiver circuit receives limited range signals and determines a second position in response to the limited range signals. The limited range signals include a positioning code. The auxiliary receiver circuit utilizes the position code to determine the second position.
According to one exemplary aspect of the present invention, a global terrestrial based system includes uniquely programmed miniature transmitters, each with limited broadcast range and massively deployed in fixed locations for use within a positioning system. These transmitters each include a wireless power circuit, control circuit, programmable memory buffer, radio frequency (RF) oscillator-amplifier, and antenna system. In its most ideal form, the power circuit is designed to obtain its operating energy parasitically and wirelessly from a pre-existing distributed utility infrastructure (e.g. street and building lighting, telephone, a.c. power etc.), converting and providing electric power to the control, memory, and RF circuits. The control circuit is designed to repeatedly deliver (about once a second) a unique pre-programmed code from the memory buffer to the RF amplifier. The resultant modulated RF carrier signal broadcast is regulated to be limited in propagation range. The broadcast range and on-the-air duty cycle may be selected at the time of installation for optimum performance with intended user navigation habits and available power. E.g., Variables such as typical user travel speed and typical navigator distance from said transmitter are factors that would influence desired effective radiated broadcast power and data broadcast periodicity respectively. Broadcast power, broadcast frequency, antenna design, and power supply are selected and installed accordingly, ensuring maximal likelihood of navigator signal reception. The pre-programmed position codes stored within each transmitter memory unit are uniquely prescribed at the time of installation, or in advance, based on survey or other mathematically derived means. Passing navigator signal data reception yields discrete information points indicative of last known general user position. The transmitters may be fielded at a variety of adjacent distances and power levels providing broadcast coverage ranging from a continuous two or three dimensional fine grid, to a one-dimensional discontinuous corridor arrangement.
In accordance with another exemplary aspect of the present invention, a receiver unit is for use with plurality of asynchronous gridded transmitter units. The receiver unit is capable of detecting low-power digital broadcast transmissions from any one of the independently fielded transmitter units, provided that the receiver distance is within local broadcasting range (a few feet to several hundred feet). A receiver discrimination circuit accepts the strongest navigation signal exceeding a preset detected energy level. Additionally the receiver includes a data buffer, display, and/or an optional embedded repeater circuit for the purpose of further relaying of received position data along with a user receiver identification code. Other parties equipped with a appropriately tuned receiver may independently monitor navigator's position.
The present invention still further relates to a unified receiver positioning system that incorporates a satellite GPS receiver with the aforementioned receiver invention. In response to the valid detection of a GPS satellite signal (first receiver), the unified system reports to the user interface a GPS position location indication. In response to the valid detection of a local fixed point broadcast signal from the terrestrially based transmitter grid (second receiver), the unified system may additionally report to the user, secondary receiver position detection, or in the ev

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interbuilding and urban canyon extension solution for global... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interbuilding and urban canyon extension solution for global..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interbuilding and urban canyon extension solution for global... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587655

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.