Interactive MRI scan control using an in-bore scan control...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S411000, C324S318000

Reexamination Certificate

active

06275721

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of this invention is magnetic resonance imaging (MRI) methods and systems. More particularly, the invention relates to interactive control of the scan plane prescription during an MRI guided procedure.
When a substance such as human tissue is subjected to a uniform magnetic field (polarizing field B
0
) in the z direction of a Cartesian coordinate system, the individual magnetic moments of the nuclear spins in the tissue attempt to align with this polarizing field, but precess about the field in random order at their characteristic Larmor frequency. If the substance, or tissue, is also subjected to a magnetic field (excitation field B
1
) which is in the x-y plane and which is near the Larmor frequency, the net aligned moment M
z
may be rotated, or “tipped”, into the x-y plane to produce a net transverse magnetic moment M
t
. A signal is emitted by the excited spins after the excitation signal B
1
is terminated, and this signal may be received and processed to form an image.
When utilizing these signals to produce images, magnetic field gradients (G
x
, G
y
and G
z
) are employed. Typically, the region to be imaged is scanned by a sequence of measurement cycles, or “views”, in which these gradients vary according to the particular localization method being used. The resulting set of received nuclear magnetic resonance (NMR) signals are digitized and processed to reconstruct the image using one of many well known reconstruction techniques.
Intra-operative MR imaging is employed during a medical procedure to assist the physician in guiding an instrument. For example, during a needle biopsy the MRI system is operated in a real-time mode in which image frames are produced at a high rate so that the physician can monitor the location of the needle as it is inserted. A locator device such as that described in Dumoulin et al. U.S. Pat. No. 5,271,400 issued Dec. 21, 1993 and U.S. Pat. No. 5,307,808, issued May 3, 1994, both of which are assigned to the instant assignee, may be used to track the location of the instrument and provide coordinate values to the MRI system which enable it to mark the location of the instrument in each reconstructed image. The medical instrument is attached to a handpiece that is manipulated by the physician and whose position is detected by surrounding sensors. For example, the handpiece may emit light from two or more light emitting diodes which is sensed by three stationary cameras.
Tracking devices which employ the MRI system to locate markers in the medical device have also been developed. As described in Dumoulin et al. U.S. Pat. Nos. 5,271,400, 5,307,808 and 5,318,025, Souza et al. U.S. Pat. No. 5,353,795 and Watkins et al. U.S. Pat. No. 5,715,822, each of which is assigned to the instant assignee, such tracking systems employ a small coil attached to a catheter or other medical device to be tracked. A NMR pulse sequence is performed to establish desired magnetic field gradients to produce transverse magnetization at the location of the tracking coil carried by the tracked device. The location of the tracking coil is determined and is superimposed at the corresponding location in a medical image acquired with the same MRI system.
During an interactive MRI diagnostic procedure or interventional procedure, it is common for the operator to frequently change the scan plane coordinates and orientation. It may also be desirable for the operator to modify the imaging pulse sequence parameters or exercise other control over the MR scanner in a rapid fashion, especially for interactive control of real-time imaging sequences. Additionally, it may be desirable for the operator to view in-bore the results of image formation on a screen built into the controlling device. There is currently no method that permits an operator working in-bore to perform such operations.
SUMMARY OF THE INVENTION
A scan control device for use in the bore of an MRI system to interactively control the scan plane prescription includes a housing that encloses a plurality of tracking RF coils and a corresponding plurality of MR signal sources. The MRI system periodically performs tracking coil NMR pulse sequences during the MRI interactive procedure that acquire tracking coil data from which the position and orientation of the scan control device are determined and then used to update the scan plane prescription of the NMR imaging pulse sequence being performed. During the MRI interactive procedure, the operator manipulates the scan control device to point at particular anatomy of interest and indicate the desired viewing orientation. The tracking coil NMR pulse sequences are interleaved with the imaging NMR pulse sequences, and the acquired tracking coil data are used to calculate scan plane parameters for updating the NMR pulse sequence parameters.
Another aspect of the invention is the provision of visual feedback to the operator during the MRI interactive procedure. The scan control device may also house a display which produces the image reconstructed from data acquired with the NMR imaging pulse sequences. As the scan control device is manipulated about the patient, the NMR imaging pulse sequence is continuously updated and the reconstructed image on the display is updated to promptly indicate to the operator the imaged anatomy.
Yet another aspect of the invention provides the operator with the ability to alter the scan prescription during the MRI interactive procedure. The scan control device may include manually operable data input devices that can be used by the operator to alter the NMR imaging pulse sequence prescription. For example, parameters such as transmit-receive (TR) period, excitation pulse flip-angle or field of view may be adjusted by the operator while in the bore of the MRI system magnet.


REFERENCES:
patent: 5365927 (1994-11-01), Roemer et al.
patent: 5512826 (1996-04-01), Hardy et al.
patent: 5512827 (1996-04-01), Hardy et al.
patent: 5590655 (1997-01-01), Hussman
patent: 5947900 (1999-09-01), Derbyshire et al.
patent: 6021342 (2000-02-01), Brabrand
patent: 6023636 (2000-02-01), Wendt et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interactive MRI scan control using an in-bore scan control... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interactive MRI scan control using an in-bore scan control..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interactive MRI scan control using an in-bore scan control... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.