Inter vehicle communication system

Communications: electrical – External condition vehicle-mounted indicator or alarm – Transmitter in another vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S435000, C340S439000, C340S902000

Reexamination Certificate

active

06765495

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a low-cost communication system for vehicles to permit the exchange of data between vehicles as they travel along a highway.
BACKGROUND OF THE INVENTION
When driving a vehicle, such as an automobile or truck on a highway, the observation of driving conditions tends to be up to each individual driver. Of course, drivers can receive safety information from public radio stations or even from other drivers through two-way radios such as citizens band radios available in the United States. However, both the safety of the situations in which drivers find themselves and the degree satisfaction or dissatisfaction which driving gives them is directly dependent upon the ability of the driver to collect and interpret necessary data, including listening to reports on the radio, and then be able to take the appropriate action within a required response time. Unfortunately, since the human driver does not always collect and interpret necessary data appropriately, many traffic accidents occur on the highways today because of human error, or near misses occur which tends to give the driver an intense sense of dissatisfaction with the driving experience.
Prior art systems have attempted to provide mechanisms for transferring data between automobiles traveling on highways. U.S. Pat. No. 4,706,086 issued to E. Panizza on Nov. 10, 1987 discloses a system for signaling between vehicles. In Panizza, sensors are used to detect various vehicle parameters. A processing unit processes the sensor data to determine the vehicle environment and to create a signal message about the environment. This message is then sent to one or more vehicles traveling in the opposite direction via infrared or directional radio frequency transmission. These vehicles, if equipped with the signaling system, will process and retransmit the message to vehicles traveling in the same direction as the first vehicle. Hence, this system relies upon the presence of vehicles traveling in the opposite direction to pass messages to trailing vehicles and also relies upon a clear transmission path between vehicles in opposite lanes of the highway. Many U.S. highways are constructed such that opposing lanes are obstructed from each other, so the signaling system disclosed by Panizza may not work on such highways.
Another signaling system is disclosed in U.S. Pat. No. 5,589,827 issued to M. Scurati on Dec. 31, 1996. Scurati discloses a system where vehicle information such as speed, acceleration, location, etc. is passed from a lead vehicle to a following vehicle in a chain of vehicles by radio frequency transmission. The system relies upon tight synchronization of transmissions so that the transmission between the vehicles will not interfere with one another. This synchronization is optimally obtained from master stations providing synchronization data to all vehicles within a stretch of highway. Degraded synchronization results when the transmit and receive systems in each vehicle self-synchronize, with the possibility that some transmissions may interfere with each other. The system disclosed by Scurati transfers information from leading vehicles to following vehicles, and does not provide the capability to transfer information from following vehicles to leading vehicles or to vehicles traveling in the opposite direction.
Still another signaling system is disclosed in U.S. Pat. No. 5,424,726 issued to B. Beymer on Jun. 13, 1995. Beymer discloses a system that generally transmits vehicle information rearward by a radio frequency transmitter mounted on the rear of a lead vehicle received by a receiver mounted on the front of a following vehicle. Beymer also allows for the transmission of information forward from a following vehicle to a lead vehicle by using a forward-mounted radio frequency transmitter and a rear-mounted receiver. However, the system disclosed by Beymer relies upon highly directional transmitters to ensure that only vehicles in a substantially linear chain will be in communication. Thus, vehicles in adjacent or opposing lanes will not receive vehicle information.
Prior art systems are characterized by the use of additional components to achieve data communication between vehicles. These additional components lead to higher cost, more maintenance, and less consumer acceptance of vehicles equipped with such systems. System that rely upon radio frequency transmission are subject to interference from other radio frequency sources and possible regulatory concerns. Thus, there exists a need in the art for a low cost, interference-resistant system for communicating between vehicles.
The present invention provides low-cost, communication links between vehicles, such as private, commercial, law enforcement automobiles and trucks or even boats and trains, preferably using existing vehicular optical components combined with low cost sensors. By encoding information onto vehicle components such as headlights and taillights at appropriate data rates (less than 1 KHz for some applications), information can be transmitted between vehicles. The modulated light is sensed and decoded on board the vehicle using detectors and the encoded data need not be directly perceived by the driver. The data stream can provide critical information to the driver, including collision avoidance warnings, information about the presence of am emergency vehicle, etc., in addition to information about neighboring vehicles.
A typical application of the system is to automatically address vehicle spacing. Position and velocity information for a vehicle is obtained from sensors or data sources such as Global Positioning Satellite receivers. The inter vehicle communication system provides this information to surrounding vehicles, which then process the information to determine vehicle spacing. If a forward vehicle determines that it is being followed too closely, the forward vehicle's brake lights might flash rapidly (as if the brakes were pumped) to alert the offender of a possible safety hazard. At the same time, proximity alert information may be sent via the inter vehicle communication system from the forward vehicle to the trailing vehicle to result in an alarm or warning message in the offender's vehicle. This system effectively takes the driver in the forward vehicle out of the loop, by automatically signaling the tailgating vehicle.
Automatic inter vehicle communication provides additional advantages such as reduction in driver stress, safer lane changes, reduced travel time, and improved route planning. The advantages of the present invention are further enhanced by supporting communication among multiple vehicles. Small corner-cubes or retroreflector arrays (on either or both vehicles) can be used to relay information back to other vehicles for range-Doppler or other accident avoidance information (via time-of-flight measurements). The present invention can also be used to propagate emergency vehicle warnings among multiple vehicles. The use of new gas discharge lamps for headlights, as well as LEDs and neon discharge taillights provides an opportunity for very high data rates with minimal modification to existing hardware on vehicles.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an inter vehicle communication system for communicating between vehicles using data sources, data sensors, and vehicle sensors on each vehicle and a central processing unit on each vehicle for processing the data passed between vehicles. The data sensors, preferably optical, will receive data messages from other vehicles with the inter vehicle communication system. The central processing unit will weight this received data according to its time of generation, distance from its source, and other factors. The central processing unit will then process the weighted data along with onboard data sensed from the vehicle by vehicle sensors. The onboard data may include speed, rate of the acceleration/deceleration, steering wheel angle, yaw rate, intended lane change, braking, location, and ot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inter vehicle communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inter vehicle communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inter vehicle communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3187180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.