Telephonic communications – Special services – Service trigger
Reexamination Certificate
1998-09-04
2002-07-16
Matar, Ahmad F. (Department: 2642)
Telephonic communications
Special services
Service trigger
C379S114270, C379S219000, C379S221080
Reexamination Certificate
active
06421438
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to calling card services, and preferably global calling card services.
2. Related Art
To take advantage of global market opportunities, many telecommunications companies are forming global alliances and joint ventures with other telecommunications companies. This allows a U.S. company, for example, to immediately gain a presence in a foreign market place, without having to take on the risks, costs, and delays of merger and acquisition activities. Through joint ventures with global alliances, a telecommunications company can market its products and services in other countries. While many different types of communications services are being offered through such joint ventures, an exemplary service is calling cards.
Calling card services are typically provided by a physical Intelligent Service Network (ISN) which uses an Automated Call Distributor (ACD) for a switching platform. Both ISNs and ACDs are well known in the art. Offering global card services introduces several unique requirements to the underlying ISN platform. For one, it should support customer roaming with the same “look and feel” for the service regardless of where the customer has roamed. For example, a customer from Germany should be able to place a card call from England or France using the same dialing plan and service features. It should also allow each joint venture company in each country to customize the service per their needs, and should provide each company with control over its service. For example, a joint venture company will typically want to provide its own product branding, which is implemented with customized audio recordings on a Voice Response Unit (VRU).
One conventional approach to meet the customization and control requirement for each joint venture company is to provide each with a full-scale ISN platform. However, a full-scale ISN platform is designed for high call volumes, and it is very expensive. Depending on the countries in which they are located, many joint venture companies will have low call volume requirements, and do not wish to invest in a large-scale ISN. Also, the practice of associating a full-scale ISN platform with each joint venture company does not fully support roaming requirements, since each joint venture company would be operating their own full-scale(service) platform independently. Interfaces and compatibilities of these different platforms would complicate the problem of meeting roaming requirements.
Another conventional approach is to deploy a single ISN platform at a central location, such as in the U.S., and transport every card call that requires ISN processing to this single ISN platform. However, this approach does not allow joint venture companies to own and operate their own ISN platforms, as many desire to do, and is also very expensive due to the network long-line and backhaul transport costs.
Another drawback with this second conventional approach is that it ties up numerous lines and switches when a roaming caller makes a call. This is because the call must be routed from the point of origin to the caller's home country for verification of the caller's identity, and from there, to the call destination. This is true even if the call is intended to remain in a single country. For example, if a U.S. caller places a call in the U.K. with an intended destination in the U.K., the call is transported to a Bridging Switch in the U.S. to be processed on a domestic (U.S.) ISN. The call is then transferred back to the U.K. (or wherever the call termination is) from the U.S. Bridging Switch. The U.S. Bridging Switch, along with trans-Atlantic trunks from the point of call origination and to the point of call termination, are in use for the entire duration of the call.
Thus, a system and method are needed to provide global card services (and other ISN-based telecommunications services) through joint ventures that will meet not only the control requirements of joint venture companies, but will provide desired services to the roaming customer and will also be scaleable so that small companies will be able to afford small-scale ISN platforms.
While the above has been described for illustrative purposes in terms of joint venture companies, countries, and calling card services, it should be understood that the invention described herein is not limited to this embodiment. Instead, the invention is directed to a system and method for distributed call services, as described below.
SUMMARY OF THE INVENTION
The present invention is directed to a telecommunications system and network to support call service mobility, such as global calling card mobility. The network includes at least one Regional Hub and at least one Local Node, although the typical case would be to have several local nodes for each regional hub.
The invention may also be used for any communications service that requires Intelligent Service Network (ISN) processing. These services include, but are not limited to, operator services, collect calling, prepaid card, integrated messaging, one number services like NICI Directline™, directory services, and any interactive voice response (IVR) service.
The present invention may also be used to provide global call center services, since the ISN architecture is virtually that of a call center. As a global call center solution, it may be packaged and offered to virtually any type of global business (not just telecommunications companies). These, and other, alternate embodiments would be apparent to one skilled in the art.
According to one exemplary embodiment of the invention, each regional hub is equipped with a full scale ISN, while local nodes are furnished with a scaleable ISN. The full scale ISN is described below and further described in a patent application entitled “Intelligent Services Network Using a Switch Controller,” Ser. No. 09/096,936 filed Jun. 12, 1998, incorporated herein by reference in its entirety.
In another exemplary embodiment of the invention, the operators of the local nodes and the regional hubs are joint venture partners. It should be understood that the invention is not limited to this embodiment. The capability of each of the local nodes is determined by the requirements and desires of the local operator in the country in which the local node is deployed (and its government in many cases). If the country is small or has only a few customers using calling cards (e.g., Columbia), that local operator may desire to have a minimum capability ISN. On the other hand, if the country is a large industrialized nation with many calling card subscribers (e.g., Germany), that operator may desire to be equipped with an ISN (or multiple ISNs) closer to that of the full scale ISN of the regional hub.
The invention accommodates the requirements of not only the smaller operators but also the larger ones, by providing a system and method to handle long distance calling card calls made by both local customers and “roaming” customers.
According to another exemplary embodiment of the present invention, one local node is deployed for each joint venture country. Thus, in this embodiment, the terms “country” and “local node” have a one-for-one association. However, the invention is not limited to this embodiment. The scope of the invention is intended to cover embodiments where multiple local nodes are deployed in one or more countries, and/or when one or more local nodes are shared by a plurality of countries.
How a call is processed is a function of several factors. One factor is whether the caller is a local caller or a roaming caller. Another is the capability of the local node at which the call was placed. For example, if a caller is a roaming caller, the local node requests that the regional hub perform the validation. Also, if the roaming caller requests operator assistance, the local node passes this request to the regional hub. In both of these cases, the regional hub handles the request if possible, or passes the request to another node or hub if not. In addi
Denton Leonard
Leopold Gary W.
Morton Dennis
Vijay Sharadha
Bui Bing
Matar Ahmad F.
MCI Communications Corporation
LandOfFree
Intelligent services network architecture for global calling... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intelligent services network architecture for global calling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intelligent services network architecture for global calling... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2857629