Intelligent rate option determination method applied to ADSL...

Pulse or digital communications – Transceivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S222000

Reexamination Certificate

active

06801570

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to communication systems using multicarrier modulation. More particularly, the invention relates to multicarrier communication systems that prioritize communication data streams.
BACKGROUND
The public switched telephone network (PSTN) provides a widely available form of electronic communication. In part because of its ready availability and low facilities cost, the PSTN is carrying increasing amounts of high rate data transmissions. Data here is understood to represent all forms of digitally encoded communication information including internet, Asynchronous Transfer Mode, voice, and video data and the like. Structured originally to provide voice communication with its narrow bandwidth requirements, the PSTN increasingly relies on digital systems to meet the demand for high transmission rates.
A major limiting factor in the ability to implement high-rate digital transmission has been the subscriber loop between the telephone central office (CO) and the customer premises equipment (CPE). This loop commonly comprises a single pair of twisted copper wires, which are well suited for carrying low-frequency voice signals for which a bandwidth of 0-4 kHz is adequate. However, this loop does not readily accommodate broadband communication requirements (i.e., bandwidths on the order of hundreds of kilohertz or more) without adopting new techniques for communication.
One approach to this problem has been the development of discrete multitone digital subscriber line (DMT DSL) technology. This and other forms of DMT-based DSL technology (such as ADSL, HDSL, etc.) are referred to as “DSL technology” or simply “DSL”. The operation of discrete multitone systems and their application to DSL technology is discussed more fully in “Multicarrier Modulation For Data Transmission: An idea whose Time Has Come.” IEEE Communications Magazine, May 1990, pp. 5-14.
The device that transmits and receives data, built according to DSL technology, is often referred to as a DSL transceiver. The DSL transceivers used at the central office and at the customer premises site are referred to as the CO DSL transceiver and the CPE DSL transceiver, respectively.
In DSL technology, communication over the local subscriber loop between the CO transceiver and the CPE transceiver, is accomplished by modulating the data to be transmitted onto a multiplicity of discrete frequency carriers which are summed together and then transmitted over the subscriber loop. Individually, the carriers form discrete, non-overlapping communication subchannels of limited bandwidth. Collectively, the carriers form a broadband communication channel. At the receiver end, the carriers are demodulated and the data is recovered.
Each subchannel carries a number of bits which may vary from subchannel to subchannel, depending on, for example, the signal-to-noise ratio (SNR) of the individual subchannel. The aggregate communication rate may also vary for different subscriber loops and different communication conditions. The number of bits that can be accommodated under a specified set of communication conditions is known as the “bit allocation” of the subchannel.
The SNR of the respective subchannels is determined by transmitting a reference signal over the various subchannels and measuring the SNR of the received signal. The loading parameters (including the number of bits allocated to each subchannel and the subchannel gains) are typically calculated at the receiving (“local”) end of the subscriber line (e.g., at the CPE transceiver in the case of transmissions from the telephone central office to the subscriber, and at the CO transceiver in the case of transmissions from the subscriber premises to the central office). These parameters are communicated to the transmitting (“remote”) end so that each transmitter-receiver pair uses the same communication parameters. The bit allocation and subchannel gain parameters are stored at both ends of the communication pair link for use in defining the number of bits to be used on the respective subchannels in transmitting data to a particular receiver. Other subchannel parameters such as time and frequency domain equalizer coefficients may also be stored to aid in defining the subchannel communication.
The Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) approved two DSL communication system standards, “Asymmetrical Digital Subscriber Line (ADSL) Transceiver”, documented in Draft Recommendation G.992.1, Melbourne, Australia, Mar. 29, 1999, and “Splitterless Asymmetrical Digital Subscriber Line (ADSL) Transceiver”, documented in Draft Recommendation G.992.2, Feb. 17, 1999. Both of these standards specify that the transceiver utilizes DMT-based modulation to transmit data over traditional telephone lines, referred to as “plain old telephone service” or POTS. In these Recommendations, the data rate of communication from the CO transceiver to CPE transceiver, called downstream communication, is different from the data rate from the CPE transceiver to the CO transceiver, called upstream communication. The transceiver built according to the G.992.1 Recommendation is traditionally referred to as the full-rate ADSL transceiver, or G.dmt transceiver; the transceiver built according to the G.992.2 recommendation is traditionally referred to as the G.lite transceiver. A significant portion of the G.lite transceiver is a subset of the G.dmt transceiver.
Both G.dmt and G.lite transceivers use communication principles common to other DMT-based DSL transceivers, namely data is communicated using non-overlapping subchannels, each of which can carry a different number of bits based on its SNR measurement.
During the transceiver initialization phase, a channel analysis is performed to determine the bit allocation of each subchannel. The channel analysis determines the maximum number of bits that each subchannel can carry based on the channel SNR measurement, the required minimum SNR margin (which is determined by the maximum tolerated bit error rate), and the coding gain. The coding gain, obtained by using Reed-Solomon Coding or Trellis Coding methods and measured in decibels, can increase the total number of bits available per unit of modulated information given the maximum tolerated bit error rate. After channel analysis, the maximum aggregate communication rates for the specified communication conditions are obtained for both downstream and upstream communications. Gathered by the CO transceiver and communicated to the CPE transceiver in a specified message, this data is used to define the rate options available to both the CO transceiver and CPE transceiver. As specified in the G.992.1 and G.992.2 Recommendations, the CO transceiver provides four downstream and four upstream rate options which can be employed by the CPE and CO transceivers respectively.
To support various applications, as specified in the G.992.1 Recommendation, the G.dmt transceiver supports up to seven downstream bearer channels, and up to three upstream bearer channels, where a bearer channel is defined as a user communication stream of data communicated at a specified communication rate that is communicated without modification by an ADSL transceiver.
A G.dmt transceiver can also transmit data in two different latency paths. The first path is called the fast data path which is used for delay sensitive applications, such as voice telephony. The second path is called the interleaved data path which is used for error sensitive applications, such as file transfer applications and video applications which are more affected by transmission errors than by transmission delays. To accommodate the framing requirements of different applications, the G.992.1 Recommendation also specifies four framing modes each of which has a different amount of overhead framing bits.
Given the complexity of multiple framing modes, multiple bearer channels, and dual latency paths, there exists a need for a process to generate a set of rate options for either downstream or upstream communicat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intelligent rate option determination method applied to ADSL... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intelligent rate option determination method applied to ADSL..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intelligent rate option determination method applied to ADSL... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.