INTELLIGENT METHOD AND SYSTEM FOR PRODUCING AND DISPLAYING...

Television – Stereoscopic – Stereoscopic display device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S055000

Reexamination Certificate

active

06556236

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to an improved method and system for producing stereoscopically-multiplexed images from stereoscopic image-pairs and displaying the same stereoscopically, in an interactive manner that allows viewers to perceive displayed imagery with a sense of realism commensurate with natural viewing of physical reality.
2. Brief Description of State of the Art
In the contemporary period, stereoscopic display systems are widely used in diverse image display environments, including virtual-reality applications. The value of such image display systems resides in the fact that viewers can view objects with depth perception in three-dimensional space.
In general, stereoscopic image display systems display pairs of stereoscopic images (i.e. stereoscopic image-pairs) to the eyes of human viewers. In principle, there are two ways in which to produce stereoscopic image-pairs for use in stereoscopic display processes. The first technique involves using a “real” stereoscopic-camera, positioned with respect to a real 3-D object or scene, in order to acquire each pair of stereoscopic images thereof. The second technique involves using a computer-based 3-D modeling system to implement a “virtual” stereoscopic-camera, positioned with respect to a (geometric) model of a 3-D object or scene, both represented within the 3-D modeling system. In the first technique, it is necessary to characterize the real-image acquisition process by specifying the camera-parameters of the real stereoscopic-camera used during the image acquisition process. In the second technique, it is necessary to characterize the virtual-image acquisition process by specifying the “camera-parameters” of the virtual stereoscopic-camera used during the image acquisition process. In either case, the particular selection of camera parameters for either the real or virtual stereoscopic-camera necessarily characterizes important.properties in the stereoscopic image-pairs, which are ultimately stereoscopically-multiplexed, using one or another format, prior to display.
Presently, there are several known techniques for producing “spectrally-multiplexed images”, i.e. producing temporal-multiplexing, spatial-multiplexing and spectral-multiplexing.
Presently, there exist a large number of prior art stereoscopic display systems which use the first technique described above in order to produce stereoscopically-multiplexed images for display on the display surfaces of such systems. In such prior art systems, the viewer desires to view stereoscopically, real 3-D objects existing in physical reality. Such systems are useful in laprascopic and endoscopic surgery, telerobotics, and the like. During the stereoscopic display process, complementary stereoscopic-demultiplexing techniques are used in order to provide to the left and right eyes of the viewer, the left and right images in the produced stereoscopic image-pairs, and thus permit the viewer to perceive full depth sensation. However, the selection of camera parameters used to produce the displayed stereoscopic image-pairs rarely, if ever, correspond adequately with the “viewing parameters” of the viewer's, human vision system, which ultimately views the displayed stereoscopic image-pairs on the display surface before which the viewer resides.
Also, there exist a large number of prior art stereoscopic display systems which use the second technique described above in order to produce stereoscopically-multiplexed images for display on the display surfaces of such systems. In such systems, the viewer desires to view stereoscopically, synthetic 3-D objects existing only in virtual reality. Such systems are useful in flight simulation and training, virtual surgery, video-gaming applications and the like. During the stereoscopic display process, complementary stereoscopic-demultiplexing techniques are also used to provide to the left and right eyes of the viewer, the left and right images in the produced stereoscopic image-pair. However, the selection of camera parameters used to produce the displayed stereoscopic image-pairs in such systems rarely, if ever, correspond adequately with the viewing parameters of the viewer's human vision system, which ultimately views the displayed stereoscopic image-pairs on the display surface before which the viewer resides.
Consequently, stereoscopic viewing of either real or synthetic 3-D objects in virtual reality environments, using prior art stereoscopic image production and display systems, have generally lacked the sense of realism otherwise experienced when directly viewing real 3-D scenery or objects in physical reality environments.
Thus there is a great need in the art for a stereoscopic image production and display system having the functionalities required in high performance virtual-reality based applications, while avoiding the shortcomings and drawbacks associated with prior art systems and methodologies.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide an interactive-based system for producing and displaying stereoscopically-multiplexed images of either real or synthetic 3-D objects that permits realistic stereoscopic viewing thereof, while avoiding the shortcomings and drawbacks of prior art systems and methodologies.
Another object of the present invention is to provide such a system, in which the true viewing parameters of the viewer, including head/eye position and orientation, are continuously acquired relative to the display surface of the stereoscopic display subsystem and used during the producing of stereoscopically-multiplexed images of synthetic 3-D objects being stereoscopically viewed by the viewer in a virtual reality (VR) viewing environment, such as presented in flight simulation and training, virtual surgery video-gaming and like applications.
A further object of the present invention is to provide such a system, in which the true viewing parameters of the viewer, including head/eye position and orientation, are continuously acquired relative to the display surface of the stereoscopic display subsystem and used during the producing of stereoscopically-multiplexed images of real 3-D objects being stereoscopically viewed by the viewer in a virtual reality (VR) viewing environment, such as presented in laprascopic and endoscopic surgery, telerobotic and like applications.
Another object of the present invention is to provide such a system, in which the stereoscopically-multiplexed images are spatially-multiplexed images (SMIs) of either real or synthetic 3-D objects or scenery.
Another object of the present invention is to provide a process for producing and displaying, in real-time, spatially-multiplexed images (SMIs) of either real or synthetic 3-D objects or scenery, wherein the true viewing parameters of the viewer, including head/eye position and orientation, are continuously acquired relative to the display surface of the stereoscopic display subsystem and used during the producing of stereoscopically-multiplexed images of either the real or synthetic 3-D objects being stereoscopically viewed by the viewer in a virtual reality (VR) viewing environment.
Another object of the present invention is to provide a stereoscopic camera system which is capable of acquiring, on a real-time basis, stereoscopic image-pairs of real 3-D objects and scenery using camera parameters that correspond to the range of viewing parameters that characterize the stereoscopic vision system of typical human viewers.
Another object of the present invention is to provide a system of compact construction, such as notebook computer, for producing and displaying, in real-time, micropolarized spatially-multiplexed images (SMIs) of either real or synthetic 3-D objects or scenery, wherein the true viewing parameters of the viewer, including head/eye position and orientation, are continuously acquired relative to the display surface of the portable computer system and used during the production of spatially-multiplexed images

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

INTELLIGENT METHOD AND SYSTEM FOR PRODUCING AND DISPLAYING... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with INTELLIGENT METHOD AND SYSTEM FOR PRODUCING AND DISPLAYING..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and INTELLIGENT METHOD AND SYSTEM FOR PRODUCING AND DISPLAYING... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001744

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.