Intelligent fabric

Multiplex communications – Data flow congestion prevention or control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S395640, C370S395210

Reexamination Certificate

active

06744729

ABSTRACT:

BACKGROUND
The present invention relates to network fabrics.
The communications industry is rapidly expanding in network technologies for the broadband transmission of voice, video and data. Two such technologies are SONET, which is a high speed synchronous carrier system based on the use of optical fiber technology, and ATM which is a high speed low delay multiplexing and switching network. SONET is high speed, high capacity and suitable for large public networks, whereas ATM is applicable to a broad band integrated services digital network (BISDN) for providing convergence, multiplexing, and switching operations.
ATM uses standard size packets (cells) to carry communications signals. Each cell that is transmitted over a transmission facility includes a 5 byte header and a 48 byte payload. Since the payload is in digital form, it can represent digitized voice, digitized video, digitized facsimile, digitized data, multi-media, or any combinations of the above. The header contains information which allows each switching node along the path of an ATM communication to switch the cell to the appropriate output. The cells travel from source to destination over pre-established virtual connections. In a virtual connection, all cells from the same ingress port having the same virtual connection address will be sent to the same egress port. Once a virtual connection has been established from a Customer Premises Equipment (CPE) source to a CPE destination, all cells of the virtual connection will be sent via the same nodes to the same destination.
As discussed in U.S. Pat. No. 6,002,692, a typical switch architecture includes line interface units (LIMs), a switch fabric, and a controlle. The data path for cells traveling through an ATM network is to enter the line interface, pass through the fabric, and then exit through another line interface. For signaling and management functions, cells are removed from the outgoing stream and sent to the controller. The controller can also transmit cells through the network by passing the cells to a LIM. The cells are then transmitted through the fabric and finally transmitted out an exit line interface. Passing control through the fabric before going to the controller or leaving the switch allows multiple controllers to each monitor a small number of line interfaces with call control and network management message passed to a centralized processor when the architecture is expanded to a larger number of ports.
Connection information is contained in the ATM header and the switch cell header used internally within the switch itself. An ATM header contains a virtual path identifier (VPI) and a virtual circuit identifier (VCI) which together uniquely denote a single connection between two communicating entities. Other information, including a payload type and header error control fields, is included for use by the network in transporting the cells. The switch header contains a connection identifier to denote the connection. A portion of the connection identifier may be replaced by a sequence number as described later in this document. Additionally, the switch header contains routing information so that the cell can be routed through the switch fabric.
Due to the popularity of the Internet and applications such as video and sound content transmission, an insatiable need exists for bandwidth any time and any where. Further, due to the explosion in digital devices, a number of devices with dissimilar capability and characteristics need to be served quickly and efficiently over the fabric so that high quality presentations are achieved using minimal network resources.
SUMMARY
An intelligent switch for routing data through a network fabric in accordance with a requested quality of service (QoS), comprising: a processor; a network interface coupled to the processor and the network fabric; and means for predicting load and redistributing traffic to deliver the data at the requested QoS.
Implementations of the invention may include one or more of the following. Predictive analysis is used to configure to deliver QoS. The network fabric comprises one or more POPs and a gateway hub, wherein each POP send its current load status and QOS configuration to the gateway hub where predictive analysis is performed to handle load balancing of data streams to deliver consistent QoS for the entire network on the fly. The predicting means periodically takes snapshots of traffic and processor usage and correlates the traffic and usage data with previously archived data for usage patterns that are used to predict the configuration of the network to provide optimum QoS. The network fabric streams MPEG (Moving Picture Experts Group) elementary streams (ES), including Binary Format for Scenes (BIFS) data and Delivery Multimedia Integration Framework (DMIF) data. The BiFS data contains the DMIF data to determine the configuration of content. The DMIF and BiFS information determine the capabilities of the device accessing the channel. The data content defines the configuration of the network once its BiFS Layer is parsed and checked against the available DMIF Configuration and network status. The predicting means parses the ODs and the BiFSs to regulate elements being passed to the multiplexer. The BiFS comprises interaction rules. The rules are used to query a field in a database and wherein the field can contain scripts that execute one or more If/Then statements. The rules customize a particular object in a given scene. The network fabric includes an Asynchronous Transfer Mode (ATM) and a telephone network. Data is media content or the data represents a graphical user interface (GUI). The GUI is generated by a remote server and broadcasted to one or more devices over the fabric.
Advantages of the invention may include one or more of the following. The system combines the advantages of traditional media with the Internet in an efficient manner so as to provide text, images, sound, and video on-demand in a simple, intuitive manner.
The fabric supports the ability to communicate digital media data streams in real-time. The system is cheaper and more flexible than the prior approach to data transmission. The fabric more susceptible to incorporation within a massively parallel processing network that enhance the ability to provide real-time multi-media communications to the masses. Such a network provides a seamless, global media system which allows content creators and network owners to virtualize resources. Rather than restrictively accessing only the memory space and processing time of a local resource, the system allows access to resources throughout the network. In small access points such as wireless devices, where very little memory and processing logic is available due to limited battery life, the system is able to customize delivery so that judicious bandwidth consumption is achieved while providing a high quality presentation given particular device hardware characteristics.
The invention also support deployment of new application software and services by broadcasting data across the network rather than by instituting costly hardware upgrades across the whole network. Broadcasting software across the network can be performed at the end of an advertisement or other program that is broadcasted nationally. Thus, services can be advertised and then transmitted to new subscribers at the end of the advertisement.
Other advantages and features will become apparent from the following description, including the drawings and claims.


REFERENCES:
patent: 5682326 (1997-10-01), Klingler
patent: 5760767 (1998-06-01), Shore
patent: 6006241 (1999-12-01), Purnaveja
patent: 6026389 (2000-02-01), Nakajima
patent: 6067565 (2000-05-01), Horvitz
patent: 6084955 (2000-07-01), Key et al.
patent: 6119147 (2000-09-01), Toomey
patent: 6154771 (2000-11-01), Rangan
patent: 6262730 (2001-07-01), Horvitz
patent: 6301586 (2001-10-01), Yang
patent: 6314451 (2001-11-01), Landsman
patent: 6347224 (2002-02-01), Smyth et al.
patent: 6363411 (2002-03-01), Dugan
patent: 6385619 (2002-05-01), Eichstaedt
patent:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intelligent fabric does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intelligent fabric, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intelligent fabric will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3309623

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.