Intelligent assembly systems and methods

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S898090

Reexamination Certificate

active

06553321

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to intelligent assembly systems and methods for use in manufacturing processes.
2. Description of Related Art
Over the years, manufacturing processes have become more automated. Where repeated procedures are required, such as welding, machining or riveting, the use of automation has enhanced productivity and improved quality control by greatly reducing human error in the manufacturing process. However, in many cases, manual control is often necessary to initiate and/or terminate a process or to change out tooling and/or equipment.
Standardization of repeat operations is a primary feature of automation, though automation of manufacturing processes may take many forms and can be done at almost any phase of the process, from fabrication to inspection and packaging of a completed product. In true automation, the process or step being automated involves a sensing system for making decisions about the device or process and then a control system that reacts to the sensed information and provides control reaction. U.S. Pat. Nos. 5,910,894 and 5,917,726 to Pryor, for example, describe intelligent tools for assembly and machining through the use of sensing devices. The tools provide information with regard to part location, machining, detail location, and automation.
Manufacturing systems are also becoming more integrated. Workers involved in the manufacturing process, by controlling and operating the machinery on the shop floor, are gaining greater efficiencies through “smarter” shop floor control systems. U.S. Pat. No. 5,311,438 to Sellers et al, for example, describes integration of multiple systems in the manufacturing process which improves communication and automation. Likewise, U.S. Pat. No. 5,089,970 to Lee et al. describes the distribution of information throughout the factory to facilitate the manufacturing of products.
Still, new processes are needed to further reduce errors during assembly and provide greater efficiencies through the use of smart systems.
SUMMARY OF THE INVENTION
This invention provides an intelligent assembly system that controls, monitors, and/or evaluates a manufacturing process.
This invention separately and independently provides one or more sensors mounted on a module assembly.
This invention separately and independently provides one or more sensors be mounted on a power tool device.
This invention separately and independently provides a power tool device used for fasteners during assembly processes of manufacturing.
This invention separately and independently provides that a control system be used that receives information from one or more sensors and processes the data.
This invention separately and independently provides an operating system that receives information from the control system and controls the power tool device.
This invention separately and independently provides a database of parameters associated with the fasteners and the power tool device used during assembly processes.
This invention provides an element of automation for assembly processes based upon vibratory signatures and/or performance parameters of a power tool device.
According to various embodiments of this invention, one or more sensors are attached to and integrated with a module so that readings of the assembly process are provided. Further, according to various embodiments of this invention, one or more sensors are attached to and integrated with a power tool device used to insert/attach fasteners to a module assembly so that readings of the assembly are provided. The sensor or sensors may be interfaced with a network or otherwise arranged to transmit sensed signals to a control system.
According to various embodiments of this invention, the control system includes a signal-processing interface. The interface may include software that essentially watches the assembly process, looking out for specific events, such as the insertion of a screw, snap fit, and the like. These events can be counted to ensure that the correct number of insertions are made. In addition, a quantitative analysis can be done to assess whether these operations have been performed correctly. An output of the analysis results can be provided to the control system operator by a graphical user interface (GUI) or some other notification means or device.
According to various embodiments of this invention, results of the control system analysis are transmitted to the operator and displayed by a light, an audible tone, a computerized voice, a GUI or the like that indicates the results of the assembly process. If a defect is detected by the control system analysis, the operator can be notified and the operator may initiate an inspection of the assembled module for such defects.
In various embodiments of this invention, the operator is provided with information for each subassembly process during the assembly process. Alternately or additionally, the operator may be provided with information such as the quality of the attachment of the subassembly. In various embodiments of this invention, the operator is provided with information on each fastener as it is completed. Alternately or additionally, the operator may be provided with information such as the number and/or length of the fasteners used/inserted once the module assembly is completed. After the operator is satisfied with the assembly processes, the system can be reset as assembly of the next module is initiated.
Although the intelligent assembly systems and methods of this invention may be utilized as part of a factory shop floor control system, this invention may be embodied in a self-contained, portable system using sensor(s), control system(s), and operating system(s).
These and other features and advantages of this system are described in or are apparent from the following detailed description of exemplary embodiments.


REFERENCES:
patent: 106801 (1870-08-01), Siegel
patent: 4361945 (1982-12-01), Eshghy
patent: 5034690 (1991-07-01), Taliaferro
patent: 5089970 (1992-02-01), Lee et al.
patent: 5311438 (1994-05-01), Sellers et al.
patent: 5396703 (1995-03-01), Rice
patent: 5548756 (1996-08-01), Tantry et al.
patent: 5910894 (1999-06-01), Pryor
patent: 5917726 (1999-06-01), Pryor
patent: 6111601 (2000-08-01), Adachi
patent: 6202981 (2001-03-01), Davis et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intelligent assembly systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intelligent assembly systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intelligent assembly systems and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3110209

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.