Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-04-09
2002-12-03
Rao, Deepak R. (Department: 1624)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S063000, C514S241000, C514S245000, C514S246000, C514S252140, C514S252160, C514S252170, C514S254060, C514S259100, C514S259300, C514S259310, C514S259500, C514S261100, C514S263200, C514S264110, C514S265100, C514S266230, C514S275000, C544S195000, C544S209000, C544S212000, C544S243000, C544S244000, C544S256000, C544S265000, C544S281000, C544S319000, C544S320000, C544S321000
Reexamination Certificate
active
06489333
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to novel heterocycles which are useful as antagonists of the &agr;
v
&bgr;
3
integrin, the &agr;
2b
&bgr;
3
integrin, and related cell surface adhesive protein receptors, to pharmaceutical compositions containing such compounds, processes for preparing such compounds, and to methods of using these compounds, alone or in combination with other therapeutic agents, for the inhibition of cell adhesion, the treatment of angiogenic disorders, inflammation, bone degradation, cancer metastasis, diabetic retinopathy, thrombosis, restenosis, macular degeneration, and other conditions mediated by cell adhesion and/or cell migration and/or angiogenesis.
BACKGROUND OF THE INVENTION
Angiogenesis or neovascularization is critical for normal physiological processes such as embryonic development and wound repair (Folkman and Shing, J. Biol. Chem. 1992, 267:10931-10934; D'Amore and Thompson, Ann. Rev. Physiol. 1987, 49:453-464). However, angiogenesis also occurs pathologically, for example, in ocular neovascularization (leading to diabetic retinopathy, neovascular glaucoma, retinal vein occlusion and blindness), in rheumatoid arthritis and in solid tumors (Folkman and Shing, J. Biol. Chem., 1992, 267:10931-10934; Blood and Zetter, Biochim. Biophys. Acta., 1990, 1032:118-128).
Tumor dissemination, or metastasis, involves several distinct and complementary components, including the penetration and transversion of tumor cells through basement membranes and the establishment of self-sustaining tumor foci in diverse organ systems. To this end, the development and proliferation of new blood vessels, or angiogenesis, is critical to tumor survival. Without neovascularization, tumor cells lack the nourishment to divide and will not be able to leave the primary tumor site (Folkman and Shing, J. Biol. Chem., 1992, 267:10931-10934).
Inhibition of angiogenesis in animal models of cancer has been shown to result in tumor growth suppression and prevention of metastatic growth (Herblin et al., Exp. Opin. Ther. Patents, 1994, 1-14). Many angiogenic inhibitors have been directed toward blocking initial cytokine-dependent induction of new vessel growth, e.g. antibodies to endothelial cell growth factors. However, these approaches are problematic because tumor and inflammatory cells can secrete multiple activators of angiogenesis (Brooks et al., Cell, 1994, 79:1157-1164). Therefore, a more general approach that would allow inhibition of angiogenesis due to a variety of stimuli would be of benefit.
The integrin &agr;
v
&bgr;
3
is preferentially expressed on angiogenic blood vessels in chick and man (Brooks et al., Science, 1994, 264:569-571; Enenstein and Kramer, J. Invest. Dermatol., 1994, 103:381-386). Integrin &agr;
v
&bgr;
3
is the most promiscuous member of the integrin family, allowing endothelial cells to interact with a wide variety of extracellular matrix components (Hynes, Cell, 1992, 69:11-25). These adhesive interactions are considered to be critical for angiogenesis since vascular cells must ultimately be capable of invading virtually all tissues.
While integrin &agr;
v
&bgr;
3
promotes adhesive events important for angiogenesis, this receptor also transmits signals from the extracellular environment to the intracellular compartment (Leavesley et al., J. Cell Biol., 1993, 121:163-170, 1993). For example, the interaction between the &agr;
v
&bgr;
3
integrin and extracellular matrix components promotes a calcium signal required for cell motility.
During endothelium injury, the basement membrane zones of blood vessels express several adhesive proteins, including but not limited to von Willebrand factor, fibronectin, and fibrin. Additionally, several members of the integrin family of adhesion receptors are expressed on the surface of endothelial, smooth muscle and on other circulating cells. Among these integrins is &agr;
v
&bgr;
3
, the endothelial cell, fibroblast, and smooth muscle cell receptor for adhesive proteins including von Willebrand factor, fibrinogen (fibrin), vitronectin, thrombospondin, and osteopontin. These integrins initiate a calcium-dependent signaling pathway that can lead to endothelial cell, smooth muscle cell migration and, therefore, may play a fundamental role in vascular cell biology.
Recently, an antibody to the &agr;
v
&bgr;
3
integrin has been developed that inhibits the interaction of this integrin with agonists such as vitronectin (Brooks et al., Science, 1994, 264:569-571). Application of this antibody has been shown to disrupt ongoing angiogenesis on the chick chorioallantoic membrane (CAM), leading to rapid regression of histologically distinct human tumor transplanted onto the CAM (Brooks et al., Cell, 1994, 79:1157-1164). In this model, antagonists of the &agr;
v
&bgr;
3
integrin induced apoptosis of the proliferating angiogenic vascular cells, leaving pre-existing quiescent blood vessels unaffected. Thus, &agr;
v
&bgr;
3
integrin antagonists have been shown to inhibit angiogenesis and are recognized as being useful as therapeutic agents for the treatment of human diseases such as cancer, restenosis, thromoembolic disorders, rheumatoid arthritis and ocular vasculopathies (Folkman and Shing, J. Biol. Chem., 1992, 267:10931-10934).
Increasing numbers of other cell surface receptors have been identified which bind to extracellular matrix ligands or other cell adhesion ligands thereby mediating cell-cell and cell-matrix adhesion processes. These receptors belong to a gene superfamily called integrins and are composed of heterodimeric transmembrane glycoproteins containing &agr;- and &bgr;-subunits. Integrin subfamilies contain a common &bgr;-subunit combined with different &agr;-subunits to form adhesion receptors with unique specificity. The genes for eight distinct &bgr;-subunits have been cloned and sequenced to date.
The &agr;
v
&bgr;
3
heterodimer is a member of the &bgr;
3
integrin subfamily and has been described on platelets, endothelial cells, melanoma, smooth muscle cells, and osteoclasts (Horton and Davies, J. Bone Min. Res. 1989, 4:803-808; Davies et al., J. Cell. Biol. 1989, 109:1817-1826; Horton, Int. J. Exp. Pathol., 1990, 71:741-759). Like GPIIb/IIIa, the vitronectin receptor binds a variety of RGD-containing adhesive proteins such as vitronectin, fibronectin, VWF, fibrinogen, osteopontin, bone sialo protein II and thrombospondin in a manner mediated by the RGD sequence. A key event in bone resorption is the adhesion of osteoclasts to the matrix of bone. Studies with monoclonal antibodies have implicated the &agr;
v
&bgr;
3
receptor in this process and suggest that a selective &agr;
v
&bgr;
3
antagonist would have utility in blocking bone resorption (Horton et al., J. Bone Miner. Res., 1993, 8:239-247; Helfrich et al., J. Bone Miner. Res., 1992, 7:335-343).
Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which platelets play a key role. Within seconds of vessel injury, resting platelets become activated and are bound to the exposed matrix of the injured area by a phenomenon called platelet adhesion. Activated platelets also bind to each other in a process called platelet aggregation to form a platelet plug. The platelet plug can stop bleeding quickly, but it must be reinforced by fibrin for long-term effectiveness, until the vessel injury can be permanently repaired.
Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic mechanism results in intravascular thrombus formation. Activation of platelets and the resulting platelet aggregation and platelet factor secretion has been associated with a variety of pathophysiological conditions including cardiovascular and cerebrovascular thromboembolic disorders, for example, the thromboembolic disorders associated with unstable angina, myocardial infarction, transient ischemic attack, stroke, atherosclerosis and diabetes. The contribution of platelets to these disease processes stems from their ability to form ag
Jadhav Prabhakar K.
Pitts William J.
Belfield Jing S.
Bristol - Meyers Squibb Pharma Company
Larsen Scott K.
Rao Deepak R.
LandOfFree
Integrin antagonists does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrin antagonists, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrin antagonists will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2966052