Multiplex communications – Communication techniques for information carried in plural... – Adaptive
Reexamination Certificate
1999-05-18
2002-10-15
Ton, Dang (Department: 2661)
Multiplex communications
Communication techniques for information carried in plural...
Adaptive
C370S395520
Reexamination Certificate
active
06466583
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to protocol architectures, for use in network management of telecommunications systems, methods of managing telecommunications networks and telecommunications network management systems.
2. Discussion of the Background
For the avoidance of doubt, it should be noted that network management systems, in telecommunications, refer to the equipment, software, and methods used to control the technical operation of a telecommunications network. Inventions relating to network management systems are based on telecommunications technology and invariable have a direct and real effect on the operation of telecommunications equipment such as telephone exchanges, ATM systems, intelligent networks, and the like.
Most computer systems, including those that control network elements implementing SDH (Synchronous Digital Highway), ATM (Asynchronous Transfer Mode), SS7 (ITU-T Signalling No. 7) and others, will, in the future, be equipped with management facilities conforming to SNMP (the Internet Simple Network Management Protocol). This is also true for most CPE (Customer Premises Equipment). Similarly, many of the aforementioned computer systems will be equipped with ISO-oriented management protocols, in particular CMIP, (ISO/ITU Common Management Information Protocol). It is likely that CMIP and SNMP will coexist for a long period of time. It is also likely that SNMP will, in many cases, be used to implement point-to-point, low-level, element management. CMIP will be deployed as an instrument to coordinate those SNMP-based management systems on a network, service and business, wide level.
SUMMARY OF THE INVENTION
The present invention is intended to facilitate a sharing of communication resources between SNMP and CMIP. Many systems deployed by telecommunications operators will, in the future, consist of both SNMP and CMIP management mechanisms. An example of such a system is the Telia City Service's ATM network. The systems solution, of the present invention, proposes a mechanism which will enable CMIP to be implemented directly on top of SNMP. By using this mechanism, security and administrative mechanisms that are included in SNMPv2, or SNMPv1.5, can be reused for CMIP. This will enable telecommunications operators to actively fight the network complexity inflation that is currently placing a heavy burden on telecommunications networks.
An octet-oriented approach has been defined by Marshall Rose (Internet RFC 1185) for using data generated by BER and then feeding this data directly into TCP. However, this method is purely a data transport technique and does not cater for utilization of administrative and security frameworks and resources already in place for SNMP.
According to a first aspect of the present invention, there is provided a telecommunications system, including a network management centre and at least one network element, in which network management data is transmitted, at least partially, over a link(s) employing CMIP and SNMP, characterised in that SNMP based management protocols are reused as a transport mechanism for CMIP PDUs.
Said SNMP may have a security and administrative framework that is reused for said CMIP.
After serialisation of CMIP PDUs into octet strings, the octet strings may be encapsulated into SNMP PDUs for transmission.
The octet strings may include a MIB tree reference.
Said telecommunications management centre may include a serializer adapted to transform CMISE/ROSE ASN.1 data structures to a string of octets.
Said telecommunications system may include at least one network management system, said network management centre may transmit said network management data to said at least one network element via said at least one network management system, and said network management data may be transmitted between said network management centre and said network management system using either CMIP, or SNMP.
Said telecommunications system may include a plurality of network management systems.
Said telecommunications system may include a plurality of network elements, and said network elements may include SDH, ATM, SS7.
Said telecommunications system may include a first and second CMISE, said first CMISE may be adapted to establish an association with said second CMISE, and said association may specify a presentation context.
Said presentation context may be ROSE.
Once said association is established, CMIP may work on top of ROSE, which may work on top of a serializer that transforms ASN.1 data structures from CMISE/ROSE to a string octet according to BER.
Strings of octets produced by said serializer may be conveyed to a local SNMP interface which can be either a manager, or an agent.
Said octet strings may include a MIB-tree reference pertaining to said octet strings' origin, said MIB-tree reference may function as an entry to a set of variables and tables acting as a repository for CMISE/ROSE generated octet strings.
When an initiating CMISE side of a manager/agent border exchange service has identified a MIB-tree reference, pertaining to a particular association and invocation, it may cause a generated octet string to be written into a MIB variable/table entry on the other side of a manager/agent border exchange service.
Said network element may be an ATM switch.
According to a second aspect of the present invention, there is provided,a protocol architecture, for transmission of network management data using both CMIP and SNMP, characterised in that SNMP based management protocols are reused as a transport mechanism for CMIP.
The SNMP's security and administrative framework may be reused for CMIP.
CMIP PDUs may be serialised, into octet strings, and encapsulated into SNMP PDUs.
The octet strings may include a MIB tree reference.
The process of serialisation may transform CMISE/ROSE ASN.1 data structures into a string of octets.
A first CMISE may be adapted to establish an association with a second CMISE, and said association may specify a presentation context.
Said presentation context may be ROSE.
CMIP may work on top of ROSE, which may work on top of the process of serialization that transforms ASN.1 data structures from CMISE/ROSE to a string octet, according to BER.
Strings of octets produced by said process of serialization may be conveyed to a local SNMP interface which can be either a manager, or an agent.
Said octet strings may include a MIB-tree reference pertaining to said octet strings' origin, and said MIB-tree reference may function as an entry to set of variables and tables acting as a repository for CMISE/ROSE generated octet strings.
An MIB may be linked to a layer
2
service provider via a first protocol stack which may include CMISE/CMIP and ROSE.
Said first protocol stack may include SMASE.
An MIB may be linked to a layer
2
service provider via a second protocol stack which includes SNMP, UDP and IP.
Said first protocol stack may include said second protocol stack.
According to a third aspect of the present invention, there is provided a method of managing a telecommunications system, said telecommunications system, including a network management centre and at least one network element, in which network management data is transmitted, at least partially, over a link(s) employing CMIP and SNMP, said method characterised by reusing SNMP based management protocols as a transport mechanism for CMIP PDUs.
REFERENCES:
patent: 5263137 (1993-11-01), Anezaki
patent: 5452433 (1995-09-01), Nihart et al.
patent: 5561769 (1996-10-01), Kumar et al.
patent: 5710908 (1998-01-01), Man
patent: 5781544 (1998-07-01), Daane
patent: 5931911 (1999-08-01), Remy et al.
patent: 5960176 (1999-09-01), Kuroki et al.
patent: 6101538 (2000-08-01), Brown
patent: 6219718 (2001-04-01), Villalpando
patent: WO 94/23514 (1994-10-01), None
R. Zihang, et al., Annales des télécommunications, vol. 49, No. 1-2, pp. 17-26, “Network Management Integrating SNMP/CMIP Protocol Implementations”, 1994.
B. Moore, et al., IEEE Network Operations and Management Symposium, pp. 257-267, “CM
Nguyen Brian
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Telia AB
Ton Dang
LandOfFree
Integration of SNMP and CMIP does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integration of SNMP and CMIP, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integration of SNMP and CMIP will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973564