Integrated wall apparatus for delivering uninterrupted...

Electricity: battery or capacitor charging or discharging – Cell or battery charger structure – For battery pack

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06593723

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to uninterrupted power supply devices and, more particularly, to an uninterrupted power supply apparatus for integration in a wall structure and which includes master and individual switches for user control of which electrical outlets may receive battery power.
Uninterrupted power supply (“UPS”) devices are commonly used for maintaining a supply of electrical current to computers and other electronic devices. A conventional UPS would include multiple electrical outlets and a battery such that electronic devices plugged into the UPS would draw current from the battery if the AC electrical power source was unavailable. Typically, the time to transfer from AC to battery power is very short such that data is not lost.
Although assumably effective for their intended purposes, the existing devices are not well-suited for providing uninterrupted power to an entire room, office, or to equipment that consumes large amounts of electricity. Until now, such a utility function would require multiple independent UPS devices that would be obtrusive, unattractive, and functionally inefficient.
Therefore, it would be desirable to have an uninterrupted power supply apparatus that is hidden within a wall structure while providing uninterrupted power to multiple electronic devices. Further, it would be desirable to have an apparatus which may optionally include multiple batteries easily accessible through a control panel. Still further, it would be desirable to have an apparatus in which a plurality of electrical outlets may be individually controlled regarding whether battery power flows thereto.
SUMMARY OF THE INVENTION
An apparatus for providing uninterrupted electrical power according to the present invention includes a pair of guide tracks that may be mounted vertically to adjacent studs of a wall structure. At least one storage cell, e.g. a rechargeable battery, is mounted for slidable movement along the guide tracks such that additional storage cells may be successively added. The apparatus includes a control unit positioned adjacent one of the guide tracks and which includes a logic circuit. The logic circuit is electrically connected to an AC power source and to the at least one storage cell. The logic circuit is capable of switching from drawing current from the AC power source to drawing current from the at least one storage cell when AC power is interrupted. The apparatus includes a control panel having a master selector switch that may be toggled between “off”, “on”, and “on-with-battery” configurations. In the “on” configuration, current flowing to a plurality of electrical outlets will only be drawn from the main power source and no storage cell backup will be provided in case of power interruption. In the “on-with-battery” mode, current will be drawn from the at least one storage cell if AC power is interrupted. This mode selector switch allows a user to determine whether or not it is necessary to drain power from the storage cell to maintain operation of certain electric devices. For example, if no critical devices are in operation, a user may choose not to employ the battery backup feature. Further, if non-critical electronic devices such as lamps or electric heaters are connected to the apparatus overnight, over a weekend, or longer periods of time, a user may choose not to drain the storage cell in case of a power outage.
In addition, the apparatus includes individual selector switches which allow a user to regulate whether specific electrical outlets will draw current from the storage cell. In other words, a user may exercise control over which electric devices are critical and therefore worthy of battery backup and which devices do not justify consumption of storage cell energy. Since various devices will be plugged into various outlets over time, having a quick and easy means for regulating storage cell usage is important for efficient management of overall storage cell energy. Further, each electrical outlet is associated with a dial with which a user may manually regulate the voltage of current flowing thereto. Certain electric devices like lights or electric heaters can operate at less than full power. Thus, using an appropriate dial to reduce output voltage will save power, this being especially important if current is being drawn from the storage cell when AC power is interrupted.
Therefore, a general object of this invention is to provide an apparatus for providing uninterrupted power to electric devices that are connected to the apparatus.
Another object of this invention is to provide an apparatus, as aforesaid, which may be mounted and substantially hidden within a wall structure.
Still another object of this invention is to provide an apparatus, as aforesaid, to which multiple storage cells may be successively added or removed by a user.
Yet another object of this invention is to provide an apparatus, as aforesaid, having “off”, “on”, and “on-with-battery” modes that are selectable by a user.
A further object of this invention is to provide an apparatus, as aforesaid, having electrical outlets that may be individually regulated as to whether storage cell current may flow thereto in case of AC power interruption.
A still further object of this invention is to provide an apparatus, as aforesaid, in which the voltage of current flowing to an electrical outlet may be individually regulated by a user.
Another object of this invention is to provide an apparatus, as aforesaid, which charges the storage cell when AC power is available.
Other objects and advantages of this invention will become apparent from the following description taken in connection with the accompanying drawings, wherein is set forth by way of illustration and example, embodiments of this invention.


REFERENCES:
patent: 5244411 (1993-09-01), Schinke et al.
patent: 5396164 (1995-03-01), Anegawa
patent: 5801513 (1998-09-01), Smith et al.
patent: 5818204 (1998-10-01), Banyas et al.
patent: 5844328 (1998-12-01), Furst
patent: 5869949 (1999-02-01), Nishikawa et al.
patent: 6040640 (2000-03-01), Gehre et al.
patent: 6124797 (2000-09-01), Mercado
patent: 6275006 (2001-08-01), Koike et al.
patent: 6323622 (2001-11-01), Lin et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated wall apparatus for delivering uninterrupted... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated wall apparatus for delivering uninterrupted..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated wall apparatus for delivering uninterrupted... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3010073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.