Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control
Reexamination Certificate
2001-07-18
2003-04-22
Beaulieu, Yonel (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle subsystem or accessory control
Reexamination Certificate
active
06553297
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATION
The present invention is related to Japanese patent application No. 2000-225501, filed Jul. 26, 2000; the contents of which are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to an integrated vehicle control system for integratedly controlling multiple components mounted on a vehicle, and more particularly, the present invention relates to an integrated vehicle control system that provides a quick exchange of important information between such components.
DESCRIPTION OF THE RELATED ART
Recently, to cope with an increase in system scale due to an increase in the number of components of a vehicle, there has been proposed an integrated vehicle control system which permits exchange of data between control elements provided for each of plural such vehicular components and which thereby realizes stable control for the vehicle as a whole.
For example, in an integrated vehicle control system disclosed in JP-A No. Hei 10-250417, control elements for controlling engine output, driving force and braking force and control elements for controlling vehicular operation characteristics are arranged in the form of a hierarchical structure. And, there is provided an entire vehicle adjusting unit which controls those control elements integratedly. According to the integrated vehicle control system, by supply required characteristics successively from high to low hierarchical level, component operation (actuator) is determined where each control element controls, and an optimum control is realized with the entire vehicle.
Thus, by dividing the vehicular control system into multiple systems, the number of components of a control system that is subject to design modification to match a change in system specification is decreased and the period required for the design modification is shortened thereby. Or, by keeping the components independent of each other, it is possible to develop components concurrently and shorten the development period for a vehicle as a whole.
However, in such a system wherein the vehicle is controlled in a hierarchical manner, even when urgent information is output from a certain control element to another control element, control is performed through the foregoing entire vehicle adjusting unit, resulting in a response delay. Accordingly, there is a fear that the vehicle behavior may become unstable.
For example, a problem arises in case of making an ACC (Adaptive Cruise Control) wherein a vehicle-to-vehicle distance between this vehicle and another vehicle traveling ahead is measured and the driving and braking force of this vehicle are controlled according to the thus-measured vehicle-to-vehicle distance, thereby maintaining an appropriate vehicle-to-vehicle distance. More particularly, when the vehicle traveling ahead decelerates suddenly or when a vehicle breaks into the front of this vehicle at a very short distance, the control decelerates the vehicle rapidly for preventing a rear-end collision. When this control is made by the engine control for example, the throttle valve is fully closed to diminish the driving force if the engine is in operation. If the control for deceleration is made by a transmission control, the gear shift range (change gear ratio) is switched to a low speed. Further, if brake control is used, brakes are applied.
However, arithmetic operations for the above controls are generally performed according to a predetermined cycle, so the actuator operation delays corresponding to the arithmetic operation cycle. In many cases, this arithmetic operation cycle is set longer than an operation limit of each actuator, i.e., longer than a cycle below which it is impossible to make a response even if the actuator is driven. In this case, therefore, a delay in operation of the actuator is so slight as causes no problem in normal vehicular operations, but causes a problem in case of an urgent operation.
Particularly, where a portion (the entire vehicle adjusting unit in the above example) which determined a behavior of the entire vehicle and a portion which drives actuators are provided on separate units and are connected together through a communication line, a response delay caused by communication is added and the danger of collision increases.
A problem arises also where on a road surface having a small coefficient of friction, such as a frozen road, the system must exhibit a traction function to prevent wheel spin and allow the vehicle to travel stably by adjusting both braking force and generated torque from the engine. For example, if the brake system becomes deteriorated, it is necessary that generated torque be adjusted by only the engine to allow the vehicle to travel stably. But, it is necessary to quickly execute an engine control processing for the deteriorated function of the brakes.
Particularly, in the foregoing unexamined publication, information of this deterioration (urgent information) is transmitted while going back the hierarchy to a level at which a command can be issued from the brake side to the engine side, and a command is issued to the engine on the basis thereof. In this case, if the engine and the brakes, as well as a portion which outputs operation guides to the engine and the brakes, are provided on separate units connected through a communication line, the above urgent information passes the communication line many times and the influence of the resulting delay in response is by no means negligible for maintaining the vehicle stable.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are intended for purposes of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. In the drawings:
SUMMARY OF THE INVENTION
The present invention has been accomplished in view of the above-mentioned drawbacks and it is an object of the invention to provide a system for integratedly controlling plural components mounted on a vehicle and capable of effecting a quick exchange of important information between components and keeping the vehicle behavior stable.
For achieving the above-mentioned object, in a first aspect of the present invention, there is provided an integrated vehicle control system wherein plural components mounted on a vehicle are respectively controlled by plural component control units corresponding to those components. A manager control unit of a higher order than the component control units issues an operation guide command for controlling the components. The manager control unit and the component control units, as well as the component control units themselves, are respectively connected through communication lines.
Therefore, the behaviors of the components are controlled respectively by the corresponding component control units and the behavior of the entire vehicle to be controlled can be controlled by the manager control unit. Thus, also in the system of the present invention, as is the case with the foregoing conventional system, when part of the components is changed due to a change in specification for example, all that is required is merely altering the corresponding component control unit. In system design, moreover, it suffices to design each control unit individually and therefore it is possible to shorten the development period.
In each component control unit, a manipulated variable (controlled variable) calculating means calculates a manipulated variable of the corresponding component according to an operation guide received from the manager control unit and a control means controls the component based on the manipulated variable thus calculated. Further, an important information transmitting means is provided in at least one of the plural component control units.
Based on an operational condition of t
Fujii Takehito
Kato Tomohiro
Kato Yoshifumi
Matsumoto Toshiki
Miyamoto Noboru
Beaulieu Yonel
Denso Corporation
Nixon & Vanderhye P.C.
LandOfFree
Integrated vehicle control system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated vehicle control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated vehicle control system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097789