Integrated translational service station for inkjet printheads

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S031000, C347S033000

Reexamination Certificate

active

06588876

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to inkjet printing mechanisms, and more particularly to a translational printhead servicing station and method for maintaining inkjet printhead health.
BACKGROUND OF THE INVENTION
Inkjet printing mechanisms use pens which shoot drops of liquid colorant, referred to generally herein as “ink,” onto a page. Each pen has a printhead formed with very small nozzles through which the ink drops are fired. To print an image, the printhead is propelled back and forth across the page, shooting drops of ink in a desired pattern as it moves. The particular ink ejection mechanism within the printhead may take on a variety of different forms known to those skilled in the art, such as those using piezo-electric or thermal printhead technology. For instance, two earlier thermal ink ejection mechanisms are shown in U.S. Pat. Nos. 5,278,584 and 4,683,481, both assigned to the present assignee, Hewlett-Packard Company. In a thermal system, a barrier layer containing ink channels and vaporization chambers is located between a nozzle orifice plate and a substrate layer. This substrate layer typically contains linear arrays of heater elements, such as resistors, which are energized to heat ink within the vaporization chambers. Upon heating, an ink droplet is ejected from a nozzle associated with the energized resistor. By selectively energizing the resistors as the printhead moves across the page, the ink is expelled in a pattern on the print media to form a desired image (e.g., picture, chart or text).
To clean and protect the printhead, typically a “service station” mechanism is mounted within the printer chassis so the printhead can be moved over the station for maintenance. For storage, or during non-printing periods, the service stations usually include a capping system which hermetically seals the printhead nozzles from contaminants and drying. To facilitate priming, some printers have priming caps that are connected to a pumping unit to draw a vacuum on the printhead. During operation, partial occlusions or clogs in the printhead are periodically cleared by firing a number of drops of ink through each of the nozzles in a clearing or purging process known as “spitting.” The waste ink is collected at a spitting reservoir portion of the service station, known as a “spittoon.” After spitting, uncapping, or occasionally during printing, most service stations have a flexible wiper that wipes the printhead surface to remove ink residue, as well as any paper dust or other debris that has collected on the printhead.
To improve the clarity and contrast of the printed image, recent research has focused on improving the ink itself. To provide quicker, more waterfast printing with darker blacks and more vivid colors, pigment based inks have been developed. These pigment based inks have a higher solids content than the earlier dye-based inks, which results in a higher optical density for the new inks. Both types of ink dry quickly, which allows inkjet printing mechanisms to use plain paper. Unfortunately, the combination of small nozzles and quick-drying ink leaves the printheads susceptible to clogging, not only from dried ink and minute dust particles or paper fibers, but also from the solids within the new inks themselves. Partially or completely blocked nozzles can lead to either missing or misdirected drops on the print media, either of which degrades the print quality. Thus, spitting to clear the nozzles becomes even more important when using pigment-based inks, because the higher solids content contributes to the clogging problem more than the earlier dye-based inks.
In previous technology spittoons, most of the spit ink landed in the bottom of the spittoon. Some of the ink, however, ran down the walls of the spittoon tube or “chimney” under the force of gravity and into a reservoir, where many solvents evaporated. Sometimes the waste ink solidified before reaching the reservoir, forming stalagmites from ink deposits along the sides of the chimney. These ink stalagmites often grew and clogged the entrance to the spittoon. To avoid this phenomenon, conventional spittoons must be wide, often over 8 mm in width to handle a high solid-content ink. Since the conventional spittoons were located between the printzone and the other servicing components, this extra width increased the overall printer width, resulting in additional cost being added to the printer, in material, and shipping costs. Moreover, this greater printer width increased the overall printer size, yielding a larger “footprint,” that is, a larger working space required to receive the printing mechanism, which was undesirable to many consumers.
As mentioned above, conventional spittoons were located between the printzone and the other servicing components, and to minimize the impact on printer width, the conventional spittoons were only wide enough to receive ink from one printhead at a time. Thus, the conventional spitting routine of a multi-pen unit first positioned one printhead over the spittoon for spitting, then the pen carriage moved the next pen over the spittoon for spitting, etc. Unfortunately, all this carriage motion not only slowed the spitting routine, but it was also noisy
Besides increasing the solid content, mutually-precipitating inks have been developed to enhance color contrasts. For example, one type of color ink causes black ink to precipitate out of solution. This precipitation rapidly fixes the black solids to the page, which prevents bleeding of the black solids into the color regions of the printed image. Unfortunately, if the mutually precipitating color and black inks are mixed together in a conventional spittoon, they do not flow toward a drain or absorbent material. Instead, once mixed, the black and color inks rapidly coagulate into a gel with some residual liquid.
Thus, the mixed black and color inks not only may exhibit a rapid solid build-up, but the liquid fraction may also tend to run and wick (flowing through capillary action) into undesirable locations. To resolve the mixing problem, some printers used two conventional stationary spittoons, one for the black ink and one for the color inks. Unfortunately, each of these dual spittoons must be wide enough to avoid clogging from stalagmites growing inwardly from the side walls of the spittoon chimney. Such a dual-spittoon design, with the spittoons located between the printhead and other servicing components, further increased the overall width and footprint of the printer. Furthermore, besides growing from the sides of the spittoon, the ink stalagmites sometimes grew upwardly from the bottom of the spittoon. To prevent these stalagmites from interfering with the printhead over time, the use of very deep spittoons was typically required, which could also increase the overall printer size.
Simultaneously wiping two or more printheads, one containing a pigment based ink and the other containing dye based ink, has also been a challenge. Simultaneous wiping speeds the servicing routine, so the pens can quickly return to printing. New wiping strategies are needed to accommodate the pigment based inks. To maintain the desired ink drop size and trajectory, the area around the printhead nozzles must be kept reasonably clean. Dried ink and paper fibers often stick to the nozzle plate and the cheek areas adjacent the nozzle plate, particularly on a wide tri-color pen, causing print quality defects if not removed. Wiping the nozzle plate only removes excess ink and other residue accumulated near the nozzle orifices.
In the past, the printhead wipers have typically been a single or dual wiper blade made of an elastomeric material. Typically, the printhead is translated across the wiper in a direction parallel to the scan axis of the printhead, so for a pen having nozzles aligned in two linear arrays perpendicular to the scanning axis, first one row of nozzles was wiped and then the other row was wiped. A revolutionary orthogonal wiping scheme was used in the Hewlett-Packard Company's DeskJet® 850C col

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated translational service station for inkjet printheads does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated translational service station for inkjet printheads, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated translational service station for inkjet printheads will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.