Integrated sleep apnea screening system

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S537000

Reexamination Certificate

active

06368287

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to medical monitoring devices and, in particular, it relates to a monitor for the detection of sleep apnea.
It is known that sleep related breathing disorders are a common medical problem. Two common sleep pathology syndromes are Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA).
Obstructive Sleep Apnea (OSA) occurs when the upper airway (the nose, mouth or throat) become obstructed in some way during sleep, and is usually accompanied by a decrease in the oxygen saturation of the blood (SpO
2
). Snoring indicates an intermittent obstruction, which at times may become complete, stopping air flow. Apnea (the cessation of breathing) may occur hundreds of times during one night of sleep, leading to severe sleep disruption and excessive daytime somnolence. As such, the patient may easily fall asleep during working hours, such as when the patient is driving a car or a truck. Many commercial trucking firms thus require that their drivers undergo sleep studies to determine if they suffer from OSA. Furthermore, OSA may cause heart problems such as cardiac arrhythmias and Cor Pulmonale.
Central Sleep Apnea Syndrome (CSA), in contrast, occurs due to a defect in central nervous system control of the respiratory drive, and is most commonly seen in patients with neurological disorders affecting respiratory control and in the elderly. CSA may also result in frequent awakenings and their associated impact on daytime performance.
Definitive diagnosis of these respiratory-sleep pathologies is currently achieved by means of an in-lab, full night, formal sleep study. In such a study, the patient is required to sleep for a whole night in a controlled environment (a “sleep laboratory”) while connected to multiple monitoring devices, which continuously measure such physiological parameters as respiratory effort, nasal and oral airflow, brain electrical activity (EEG), muscle electrical activity (EMG), heart rate and rhythm (ECG), and blood oxygen saturation. These parameters are recorded on paper or stored in a memory bank for later analysis. A trained sleep technician is required to oversee the study so as to ensure that all parameters are recorded properly. The data is then analyzed, either manually or by specialized software, to produces a “hypnogram” which describes the nature of the patients sleep. Indices in the hypnogram, such as an “apnea index” and a “leg movement index”, are then used, by a sleep specialist, to diagnose the patients pathology.
The formal sleep study as a means of diagnosing and following-up patients with respiratory related sleep problems, however, suffers from several deficiencies and limitations:
1. The study requires the use of multiple medical monitoring devices and the continuous presence of a trained technician. It is thus labor intensive to perform, and requires the use of multiple, expensive, resources.
2. The patient is asked to sleep in a non natural sleep environment, which may itself affect his sleep patterns.
3. The patient is inconvenienced by having to be in a hospital setting for a night.
4. There is no patient privacy.
As such, sleep laboratories are a limited resource, each containing only a limited number of beds. This is particularly problematic as studies are often conducted on “suspicious” patients in whom the outcome is frequently negative. In such patients, for whom there was no need for the study at all, a limited screening study may have been sufficient to exclude sleep pathology. The study price often prohibits repeating studies on a regular basis for purposes of patient follow-up.
In order to overcome some of these drawbacks, the performance of home studies by means of ambulatory systems has become popular. These studies utilize miniature ambulatory recorders, and are limited to a relatively small number of information recording channels. The patient is prepared for the study at the sleep lab, and returns home with all sensors appropriately attached. Alternatively, a technician may come to the patients home, or the patient may attach the sensors by himself after receiving appropriate instruction from a technician. The study is then conducted in the patient's home, as he sleeps in his own bed, and the recorded data stored in a memory device. In the morning the recorder and memory device are returned to the sleep lab for data downloading to an analysis station. Some of these ambulatory systems can correct for some data recording problems, by adjusting the gain or filtering during data recording or when post-processing the data. Alternatively, the study can be monitored from the sleep lab via a modem.
Although ambulatory sleep-apnea monitoring systems are much more convenient to the patient, and considerably less expensive than formal, in-lab, sleep studies, all current ambulatory sleep monitoring systems suffer from several deficiencies:
1. Performance of the study still requires the participation of a trained technician (for the purposes of either attaching the monitoring device or instructing the patient how to do so) and the participation of a formal sleep laboratory (for the purposes of downloading and analyzing the test results, and maintaining the equipment necessary for the performance of the test). Such tests are thus still labor and resource intensive.
2. As analysis of the recorded data is performed off-line in the sleep laboratory, the ambulatory monitoring device must be able to store all registered data in a suitable memory storage device, until such data can be downloaded. Alternatively, if the data is relayed to the sleep laboratory in real time, a modem and telephone line are necessary. Current ambulatory devices are therefore relatively complex and expensive to manufacture. As such, ambulatory studies are still too expensive to perform on a regular basis (currently approximately $500 per study), thus precluding their widespread use as a screening tool or for purposes of frequent patient follow-up. In addition, the cost of such studies does not justify their use on “difficult” patients, such as mental health patients or small children, in whom the likelihood of technical failure of the study is high.
There is therefore a need for a sleep-apnea screening system which is suitable for widespread use for patient screening and follow-up. Such a system should be sufficiently simple to implement as to allow patients to perform the study at home, without the need for assistance from a trained technician. In addition, such a system should provide the patient with an easily understandable result at the end of the study, without the need for data processing at a sleep laboratory, and without the need for interpretation of the result by a physician or technician. Finally, such a system should be sufficiently inexpensive as to make multiple and frequent studies practical to finance.
SUMMARY OF THE INVENTION
The present invention is an ambulatory sleep-apnea screening system. The invention integrates a minimal data collection and analysis system into a disposable, single use device that achieves data collection and analysis in real time, and outputs the study result in an easily understood format immediately following the study. The entire system is incorporated into a single small, flexible, plastic unit which can be easily positioned, or placed, under the patients nose, that is, upon the patients philtrum. The system is powered by a lithium battery, which is irreversibly activated by means of the patient pulling on a tab. Once activated, a respiration detector (such as that which measures temperature differences in an airflow, by which is meant a flow of inhaled and exhaled nasal or oral air) inputs data describing the pattern of respiration into a micro-processor, via an analog to digital converter. A flashing LED display indicates to the user that the device is correctly positioned. A software module detects the absence of hot airflow for a predetermined period—indicating apnea. Apnea duration is measured, normal breaths between apneas are counted, and, toget

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated sleep apnea screening system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated sleep apnea screening system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated sleep apnea screening system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2820837

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.