Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite
Reexamination Certificate
1997-11-03
2002-04-09
Issing, Gregory C. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Directive
Including a satellite
C342S357490, C342S357490
Reexamination Certificate
active
06369755
ABSTRACT:
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
As noted by A. Bannister and S. Raymond in
Surveying
, Pitman Publishing Ltd., London, 1977, the general notion of surveying was known and practiced more than 2000 years ago. The methods used at that time were simple but subject to consistency errors and required considerable time to perform. Surveying instruments have improved considerably since about 1900, taking advantage of advances in electronics, optics and other related disciplines. Recently, lasers, electro-optics, wave interaction and phase detection have been introduced into, and used in, surveying activities.
Use of a laser beam projector for surveying operations is disclosed in U.S. Pat. No. 3,471,234, issued to Studebaker. The beam rotates over terrain to be surveyed, and a beam point may be directed to a particular location and used to measure elevation and angular displacements within the region covered by the rotating beam.
Altman, in U.S. Pat. No. 3,669,548, discloses a method for determining a ship's heading or bearing, using an electro-optical angle measuring device that determines angles relative to a horizontal datum line. A plurality of parallel light beams, spaced apart by known, uniform distances and oriented at a known angle, forms a one-dimensional grid that covers the region where the ship is located. A rotating reflecting telescope on the ship has its axis aligned with one of the parallel light beams. The angle of the ship's longitudinal axis relative to the known direction of the parallel light beams is then easily read off to determine the ship's heading. This approach would not be suitable where the ship or other body whose angular orientation is to be determined can move over a large region.
Remote measurement of rotation angle of an object of interest by use of polarized light and electro-optical sensors is disclosed by Weiss et al in U.S. Pat. No. 3,877,816. The intensity of light transmitted serially through two linear polarization filters is proportional to the square of the cosine of the angle between the two polarization directions, and the proportionality constant can be determined by experiment. Unpolarized light transmitted along a first reference path with fixed polarization directions is compared with unpolarized light transmitted along a second, spatially separated and optically baffled path in which the polarization direction of one polarizer may vary. One or two light polarizers in each light beam path rotates at a constant angular velocity, which is the same for each path, and the difference in phase of the two received light signals is a measure of the angle of rotation of a polarizer (or the body to which the polarizer is attached) in the first path and a polarizer in the second path.
An optical-electronic surveying system that also determines and displays the angular orientation of a survey pole relative to a local horizontal plane is disclosed in U.S. Pat. No. 4,146,927, issued to Erickson et al. The system can receive and process range measurements directly from an electronic distance meter located near the system.
U.S. Pat. No. 4,443,103, issued to Erdmann et al, discloses use of a retro-reflective, electro-optical angle measuring system, to provide angle measurements after interruption of a signal that initially provided such information. A light beam is split into two beams, which intersect on a scanning mirror, which rotates or vibrates about a fixed axis, and the two beams are received at different locations on a retro-reflective tape positioned on a flat target surface on the target whose rotation is to be measured. These two beams form a plane that moves as the scanning mirror moves, with a reference plane being defined by the mirror at rest in a selected position. The scanning mirror sweeps the plane of the two beams across the target surface. A rotation angle of the target surface relative to the reference plane is determined, based upon the time difference between receipt of light from each of the two retro-reflected beams. The beam interception times coincide only if an edge of the retro-reflective tape is parallel to the reference plane. If receipt of light from the two retro-reflected beams is displayed on a synchronized, two-trace oscilloscope screen, the two “blips” corresponding to receipt of these two beams will have a visually distinguishable and measurable time difference &Dgr;t, as indicated in
FIGS. 2A
,
2
B and
2
C of the Erdmann et al patent. The time difference &Dgr;t will vary as the scanning mirror moves. A second Erdmann et al U.S. Pat. No. 4,492,465, discloses a similar approach but with different claims.
“Total station” electronic instrumentation for surveying, and more particularly for measurement of elevation differences, is disclosed by Wells et al in U.S. Pat. No. 4,717,251. A rotatable wedge is positioned along a surveying transit line-of-sight, which is arranged to be parallel to a local horizontal plane. As the wedge is rotated, the line-of-sight is increasingly diverted until the line-of-sight passes through a target. The angular displacement is then determined by electro-optical encoder means, and the elevation difference is determined from the distance to the target and the angular displacement. This device can be used to align a line-of-sight from one survey transit with another survey transit or to a retro-reflector. However, the angular displacement is limited to a small angular sweep, such as 12°.
U.S. Pat. Nos. 4,667,203, 5,014,066 and 5,194,871, issued to Counselman, disclose methods for measuring the baseline or separation vector between two survey marks, using GPS carrier phase signals. These methods use radiowave interferometric analysis of carrier phase signals received from many GPS satellites. This often requires observation time intervals of substantial length (≈5000 seconds) for the baseline vector determination, with reported inaccuracies less than 5 cm.
In U.S. Pat. Nos. 4,924,448 and 5,231,609, Gaer discloses a method for using GPS signals for ocean bottom mapping and surveying. Two ships, each with a GPS station (GPS antenna and receiver/processor) travel parallel routes a fixed distance apart. The first ship transmits a sonic signal toward a location on the ocean bottom, and the specularly reflected portion of this signal is received and analyzed to determine the location of the portion of the ocean bottom that reflected the signal.
Fodale et al disclose an electro-optical spin measurement system for use in a scale model airplane wind tunnel in U.S. Pat. No. 4,932,777. Optical targets (six) to receive and sense one or several light beams are located under the fuselage at the nose tip, on each of two sides of the fuselage, and under each wing tip, and a plurality of optical receivers are positioned on the perimeter of the wind tunnel to receive light from the optical targets at various angles, to determine airplane angle of attack and roll angle. The time-synchronized signals received at each receiver are recorded for subsequent analysis.
In U.S. Pat. No. 4,954,833, issued to Evans et al, information on deflection of the local vertical (obtained from gravity measurements) is combined with geodetic azimuth estimated from GPS signals to obtain an astronomical azimuth. This azimuth can be used for ballistic projectile delivery to a selected target. This method does not focus on integration of GPS operation with theodolite operation but, rather, seeks to avoid use of a theodolite to obtain the astronomical azimuth.
Kroupa et al, in U.S. Pat. No. 4,988,189, disclose use of a passive rangefinding system in combination with an electro-optical system, using image information obtained at two or more electro-optical system positions. A method for simultaneously measuring the difference between orthometric (geoidal) height and height above a given ellipsoid for a site on the Earth's surface is disclosed by Evans in U.S. Pat. No. 5,030,957. Two or more leveling rods are held at fixed, spaced apart locations, with a known baseline vector between the rods.
Nichols Mark
Talbot Nicholas C.
Issing Gregory C.
Trimble Navigation Limited
LandOfFree
Integrated SATPS total survey station does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated SATPS total survey station, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated SATPS total survey station will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2876038