Integrated release films for phase-change interfaces

Stock material or miscellaneous articles – Composite – Of silicon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S480000, C428S143000, C428S484100, C428S500000, C361S706000, C524S404000, C524S430000, C524S437000, C524S588000

Reexamination Certificate

active

06399209

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a composite interface pad or coating for use in combination with heat generating semiconductor devices, and more particularly to a composite conformable member consisting of a base thermally conductive layer having an integral and compatible anti-blocking layer (hereinafter sometimes referred to as “lacquer”) formed on an outer surface thereof. In addition to the anti-blocking properties which are important to a user prior to placement of the material in an operative assembly, this outer non-tacky release layer serves to provide significant protection for the base component against surface contamination. In addition, the anti-blocking properties may allow the electronic assembly to be “reworked”—i.e. disassembled and reassembled without the need to change the thermal interface pad. At the same time, the thermal and mechanical properties of the underlying bulk layer are not adversely affected, and remain present in the hard coated composite product. In use, the conformable composite is positioned between the opposed surfaces of a semiconductor device and a chassis or heat spreader, and accordingly becomes subjected to the elevated temperatures created and experienced by the semiconductor device during its normal operation and function.
The conformable composite member with its release surface nevertheless serves to enhance heat transfer through the elimination of voids or entrapped air which may otherwise be present along any irregular configurations formed in the opposed surfaces of the semiconductor device and chassis or heat spreader. The anti-blocking layer on the surface of the thermally conductive base layer eliminates the need for a liner film of the type which has heretofore been utilized as a protective layer and to accomplish or assist in anti-blocking. Thus, use of the conformable composite of the present invention serves to eliminate one or more significant labor-intensive operations, namely the elimination of the need to physically remove the liner film from the surface of a conformable thermally interface conductive member. Because the release surface layer is quite thin, it does not detract from the ability of the entire pad or layer to conform to the configuration of the surfaces of the members between which it is interposed.
Once it has served its purpose, the liner film must be removed prior to the point in time when it is placed into contact with the semiconductor device. This removal operation has frequently proven to be bothersome, and always time consuming and labor intensive. Hence this becomes a significant factor in the overall cost of assembly. The features of the present invention eliminate the need for the liner film, while at the same time the integrity and thermal properties of the thermally conductive composite are preserved. Depending upon the intended application for the composite, it may nevertheless be necessary to apply a liner film or tape to one surface, but not to both. Normally, when two liner films are employed, they are each removed at different points in time. In this connection, when a single liner film is used, the thin anti-blocking layer will be applied to the surface without the liner film or tape.
The present invention may also provide the ability for the electronic assembly to be disassembled and repaired without the need for replacing the phase change interface pad, since the anti-blocking layer will allow heat transfer surfaces to separate cleanly and to be reassembled.
The base or bulk portion of the composite interface upon which the release surface is applied is preferably of the phase-change type. The formulation normally comprises a blend of a microcrystalline wax, with alumina particulate being added to the wax to enhance thermal conductivity. Silicone wax may be added to the formulation for the base portion, if desired. The microcrystalline wax preferably has a melting point in the range of between about 40° C. and 80° C. In order to improve the wettability of the alumina particulate in the wax matrix, a quantity of an alkyl silane, such as for example octyl- or methyl-triethoxy silane may be utilized. This formulation is then employed to form the phase-change component forming the base or bulk portion of the composite. Other formulations useful in creating the base portion of the interface include those disclosed in application Ser. No. 09/016,768, filed Jan. 30, 1998, entitled “THERMAL INTERFACES FOR ELECTRONIC DEVICES”, as well as in application Ser. No. 08/663,800, filed Jun. 14, 1996, entitled “SEMISOLID THERMAL INTERFACE WITH LOW FLOW RESISTANCE”, now U.S. Pat. No. 5,950,066, both of which application and patent are assigned to the assignee of the present invention. Their disclosures are incorporated herein by reference.
The phase change portion of the conformable composite becomes at least partially liquid at temperatures encountered during normal operation of the solid state or semiconductor device with which it is being used. The phase change conformable composites of the present invention provide a highly thermally conductive path for dissipation of thermal energy and are effective independent of their immediate phase. The conformable composites find application on the surfaces upon which the semiconductor device is either being directly mounted, or alternatively, to which the device is being otherwise operatively thermally coupled. They may be applied as required onto surfaces of either metallic or polymeric materials. These conformable composites are preferably die-cut, although other operations may be employed.
Solid state electronic devices or components are incorporated in electronic systems generally, including systems used in the fields of data processing, communications, power supply systems, among others. Solid state electronic devices including power transistors, power modules including converts such as AC-to-DC and DC-to-DC and other similar components. The terms “semiconductor device” and “solid state electronic devices” are being used herein in a comprehensive sense, and are intended to include solid state circuits wherein a complete circuit is formed from a single block or chip of semiconductor material, solid state circuit elements such as Zener diodes, silicone controlled rectifiers, as well as other solid state components such as transistors and diodes. Other devices falling within the comprehensive meaning of the terms include passive components, thermoelectric devices, as well as lasers, each of which typically require contact with a heat exchanger or a thermally conductive path for heat dissipation. These devices are typically incorporated in packages designed for mounting on a chassis in accordance with the individual requirements of the specific circuit. As power and frequency requirements increase, and as the space available for these devices or components shrink, these packages typically require highly efficient, effective, and reliable means for dissipating heat created by the solid state electronic devices during periods of normal operation. Heat is typically transferred by thermal conduction from the package to a mounting surface. This thermal conduction may be undertaken either directly, as occurs when the device is mounted upon the heat dissipating surface, or indirectly as occurs when the device is mounted to a surface which is arranged along a more extensive thermal path leading to a heat dissipating member such as a heat sink or chassis.
In the past, during assembly, it has been common to apply a layer of grease, typically a silicone grease, or a layer of an organic wax to aid in creating a low thermal resistance path between the opposed mating surfaces of the package and the mounting surface. A layer of such grease is typically applied between these mating surfaces in order to displace air and facilitate and enhance thermal conductivity. The devices of the present invention provide significant advantages over the utilization of silicone grease particularly in production and assembly operations.
SUMMARY OF T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated release films for phase-change interfaces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated release films for phase-change interfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated release films for phase-change interfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2981421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.