Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle
Reexamination Certificate
2002-06-24
2004-09-28
Black, Thomas G. (Department: 3663)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Railway vehicle
C701S205000, C701S117000, C246S076000
Reexamination Certificate
active
06799097
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is related in general to the field of railroad operation and, in particular, to an integrated system for controlling the interaction among trains and other vehicles on the system's tracks to ensure safety and efficiency.
2. Description of the Related Art
Railroads are operated throughout the world using tested technology and procedures designed to guarantee passenger safety and to safeguard the integrity of the rail system. The approaches taken by railroad operators to perform various functions have been adopted with substantial uniformity throughout the industry. As a result, railroads tend to operate in conservative fashion and changes are implemented slowly in the art even when technological advances provide and warrant improvements.
For example, train scheduling and dispatching is carried out mostly as a separate function with substantial manual operations. Train schedules are initially laid out by planners in train graphs where the projected travel schedule of each train is shown in a position-versus-time plot. The graphs show the locations within the system (called “sidings” in the art) where trains can be switched off the main line for various operational objectives (park, load, unload, reconfigure) and the times when the trains are expected to reach each location. Thus, the graphs also show where and when trains traveling in opposite directions are expected to cross, or trains traveling in the same direction at different speeds are expected to pass one another.
FIG. 1
illustrates a typical train graph showing, for example, the progression of two trains (A and B) traveling between locations
25
-
58
and
47
-
1
, respectively. As shown, trains A and B crossed at location
39
at about 9 am. At the current time of approximately 17 hours (5 pm), highlighted in the train graph by the moving line T, train A has reached and it stopped at location
58
, while train B is departing from location
27
, where it has been stopped for about two hours, heading toward location
1
.
Train graphs are converted into railroad panels to help dispatchers control the flow of train traffic efficiently and safely. Railroad panels consist of schematic representations of the current condition of various yards along the route traveled by each train.
FIG. 2
is a portion of such a panel corresponding to the train graph of FIG.
1
. Panels are utilized by dispatchers to schedule the use of maneuvering tracks and yards as needed to allow trains to cross or overtake one another at particular locations, or to be reconfigured according to operational objectives and/or constraints. Thus, for example, the dispatcher may have decided that train A should have the right-of-way when trains A and B cross at location
39
because train A is an express train. Similarly, a dispatcher would make decisions regarding priorities for trains due to cross one another in the future, such as trains B and C, or C and D, in FIG.
1
. Accordingly, these priorities would be assigned and reflected in the current train graph and corresponding panel and the dispatcher would implement them by taking appropriate action in dealing with the train's conductor and/or with automated controls.
The position of each train is determined in real time by the use of a conventional positioning system, such as GPS, and is communicated to the dispatcher, so that the progress of each train can be followed and compared to the expected schedule expressed in the relevant train graph and panel. When a schedule delay or change occurs, adjustments are made by the dispatcher by manually rearranging the schedule reflected in the train graph and corresponding panel according to predetermined safety and efficiency constraints. For example, if train A had been running late and it had become apparent that it wins would not be able to reach location
39
in time to exert its right-of-way over train B without causing an undesirable delay, the dispatcher would have modified the train graph to reflect that change and any other modification to the schedule of other trains necessitated by the change, so that the correct information would be available for dispatching. Keeping track of each train's position with respect to its schedule and assessing the need or desirability for effecting changes in the train graphs and panels on a current basis is obviously taxing and time consuming for planners and dispatchers. In addition, safety constraints warrant a very conservative approach to making any change to the schedules reflected in active train graphs. Therefore, perturbations to planned train schedules are likely to result in delays and sub-optimal corrections that could be avoided if the process were automated and controlled by an online computerized system under the dispatcher's supervision.
Another area of sub-optimal operation is the use of maneuvering tracks. These are tracks typically present at sidings around the system for switching trains between main tracks (often referred to as “circulation” tracks) and for changing cars between trains. These tracks may be controlled by the railroad's main control center, or may be isolated from the system and left totally to local control. In practice, when a conductor wishes to leave a circulation track and enter a maneuvering zone to carry out a particular task, a request is made from the central control center for the release of the train to local operation within a given block of the maneuvering zone. If the release is granted, the control center isolates the train from the rest of the system and stops accounting for its operations until it returns, subject to further approval, to the circulation track. Thus, the system as a whole is unaware of the specific action or operation carried out on the maneuvering tracks so long as the train in question remains inside the maneuvering zone, thereby preventing any coordination with the operations conducted on the circulation tracks of the railroad system. For example, if a derailment or similar problem occurs, the control center and the dispatcher remain unaware until notified by a person. This lack of coordination is another source of potential hazards and loss of operational efficiency.
A similar problem exists with circulation tracks that need to be taken out of service temporarily for maintenance work. A track warrant (a permission to travel along a given segment of track) and/or a maintenance-of-way (an exclusive permission to be present on a segment of track to perform maintenance work) may be granted upon request to reach and maintain the pertinent segment of rail. The segment is then isolated from the supervision of the control center until the maintenance work is accomplished. During the time control of the operation in the maintenance area is released, the control center is not able to account for the current status and progress of the work. Thus, this information is not accounted for or available to optimize the overall operation of the rail system.
Another common prior-art practice in railroad operation is the use of so-called hot boxes to monitor the condition of car wheels and axles during transit. A hot box consists of a sensor device capable of detecting the temperature of a body passing within a given detection zone. A hot wheel is indicative of a potential bearing breakdown and wheel seizure that could have disastrous consequences. Thus, hot boxes are placed along tracks to monitor the temperature of the wheels of locomotives and cars of trains as they pass by. When a hot spot is detected, the hot box sends a signal to the central station, which in turn is then able to alert the train conductor to effect whatever action may be appropriate under the circumstances. This alarm configuration requires the immediate awareness and manual intervention of an operator, which is often missing as a result of distractions or other intervening constraints. In addition, when a train's schedule is altered as a result of a hot-box alarm, the scheduling changes to the trai
Chan Tak Tong
Steinberg Luiz
Villarreal Antelo Marco Antonio
Black Thomas G.
Durando Antonio R.
Mancho Ronnie
Modular Mining Systems, Inc.
Quarles & Brady Streich & Lang LLP
LandOfFree
Integrated railroad system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated railroad system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated railroad system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3257167