Integrated production of smart cards

Registers – Systems controlled by data bearing records – Credit or identification card systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S380000, C235S449000, C235S492000, C235S493000

Reexamination Certificate

active

06402028

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to smart cards. In particular, the present invention relates to a system and method for standardized, integrated and automated production of smart cards by using a script language.
BACKGROUND OF THE INVENTION
The present invention is applicable to smart cards. Also termed chip cards, integrated circuit cards, memory cards or processor cards, a smart card is typically a credit card-sized plastic card that includes one or more semiconductor integrated circuits. A smart card can interface with a point-of-sale terminal, an ATM, or with a card reader integrated with a computer, telephone, vending machine, or a variety of other devices. The smart card may be programmed with various types of functionality such as a stored-value application, a credit or debit application, a loyalty application, cardholder information, etc. Although a plastic card is currently the medium of choice for smart cards, it is contemplated that a smart card may also be implemented in a smaller form factor, for example, it may attach to a key chain or be as small as a chip module. A smart card may also be implemented as part of a personal digital assistant, telephone, or take a different form. The below description provides an example of the possible elements of a smart card, although the present invention is applicable to a wide range of types of smart cards.
A smart card may include a microprocessor, random access memory (RAM), read-only memory (ROM), non-volatile memory, an encryption module (or arithmetic unit), and a card reader (or terminal) interface. Other features may be present such as optical storage, flash EEPROM, FRAM, a clock, a random number generator, interrupt control, control logic, a charge pump, power connections, and interface contacts that allow the card to communicate with the outside world. Of course, a smart card may be implemented in many ways, and need not necessarily include a microprocessor or other features.
The microprocessor is any suitable central processing unit for executing commands and controlling the device. RAM serves as temporary storage for calculated results and as stack memory. ROM stores the operating system, fixed data, standard routines, look up tables and other permanent information. Non-volatile memory (such as EPROM or EEPROM) serves to store information that must not be lost when the card is disconnected from a power source, but that must also be alterable to accommodate data specific to individual cards or changes possible over the card lifetime. This information includes a card identification number, a personal identification number, authorization levels, cash balances, credit limits, and other information that may need to change over time. An encryption module is an optional hardware module used for performing a variety of encryption algorithms. Of course, encryption may also be performed in software.
Applied Cryptography,
Bruce Schneier, John Wiley & Sons, Inc., 1996 discusses suitable encryption algorithms and is hereby incorporated by reference.
The card reader interface includes the software and hardware necessary for communication with the outside world. A wide variety of interfaces are possible. By way of example, the interface may provide a contact interface, a close-coupled interface, a remote-coupled interface, or a variety of other interfaces. With a contact interface, signals from the integrated circuit are routed to a number of metal contacts on the outside of the card which come in physical contact with similar contacts of a card reader device. A smart card may include a traditional magnetic stripe to provide compatibility with traditional card reader devices and applications, and may also provide a copy of the magnetic stripe information within the integrated circuit itself for compatibility.
Various mechanical and electrical characteristics of a smart card and aspects of its interaction with a card reader device are described in
Smart Card Handbook,
W. Rankl and W. Effing, John Wiley & Sons, Ltd., 1997, and are defined by the following specifications, all of which are incorporated herein by reference:
Visa Integrated Circuit Card Specification,
Visa International Service Association, 1996;
EMV Integrated Circuit Card Specification for Payment Systems, EMV Integrated Circuit Card Terminal Specification for Payment Systems, EMV Integrated Circuit Card Application Specification for Payment Systems,
Visa International, Mastercard, Europay, 1996; and
International Standard; Identification Cards—Integrated Circuit(s) Cards with Contacts, Parts
1-6, International Organization for Standardization, 1987-1995.
In creating such a smart card, multiple steps are typically performed at different physical locations. One of these steps is the installation of application software. Applications intended for a smart card are typically developed by a smart card manufacturer or third party at the direction of a card issuer. The card issuer is often a bank or other financial institution, but may also be a telecommunication network operator, a merchant operating a fidelity or loyalty program, or even an agent acting for an issuer. The applications, typically written in assembly code for a specific chip, are given to the chip manufacturer that produces such chips. The chip manufacturer then burns the application software into chips on a silicon wafer. The wafer is then cut up and the chips are then sent back to the smart card manufacturer. The smart card manufacturer then embeds the chips into plastic cards.
Once the chips are embedded into plastic cards, the card manufacturer performs an initialization process. During initialization, data and data structures that are common to an entire batch of cards are installed on the cards. For example, data common to an entire batch of cards may include printing of graphics for bank or network logos, information such as a bank identification number (BIN), or the currency used by the application, such as U.S. dollars or German marks.
After initialization, a personalization process typically occurs. The personalization process may be performed by the card manufacturer, but is often performed at a specialized personalization bureau. During personalization, the smart card is loaded with data which uniquely identifies the card. For example, the personalization data can include a maximum value of a stored value card, a personal identification number (PIN), a cardholder account number, the expiration date of the card, or cryptographic keys.
The personalization bureau is typically a third party contracted by the smart card issuer to personalize their smart cards. The personalization bureau is often in a location different from the location of the smart card issuer or that of the card manufacturer. For each batch of cards, the cardholder information data must typically be pre-processed by the issuer (sorted, formatted and placed in a personalization file). Typically, each personalization bureau requires a specific file format. The issuer must modify its cardholder information data for each personalization bureau that the issuer deals with. Otherwise, the personalization bureau must modify its file formats for the different issuers with which it operates. Either way, the personalization data file must typically be redesigned for almost every change made to the specifications for a batch of cards. During personalization, personalization equipment coupled to a security device is typically used. The personalization equipment contains software which interacts with the smart card software to load personalization data. The security device is used to store cryptographic keys or other sensitive information which may be needed in the personalization process. After personalization, the cards are distributed to cardholders.
One technique for smart card personalization is described in U.S. patent application Ser. No. 08/755,459 (U.S. Pat. No. 5,889,941), entitled “System and Apparatus for Smart Card Personalization,” assigned to UbiQ Incorporated. This application teaches a s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated production of smart cards does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated production of smart cards, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated production of smart cards will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.