Integrated process for synthesizing alcohols and ethers from...

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S671000, C568S891000, C568S910000

Reexamination Certificate

active

06472572

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to the synthesis of alcohols and ethers from alkanes, and more particularly to a method of and apparatus for manufacturing methanol and dimethyl ether from methane.
BACKGROUND OF THE INVENTION
Methane has previously been converted to methanol by the halogenation of methane followed by hydrolysis of the methyl halide to form methanol. For example, gaseous chlorine has been used to chlorinate methane to form chlorinated methane, principally methyl chloride, together with other chlorides, i.e., dichloromethane, trichloromethane and carbon tetrachloride. Alternatively, methane has been subjected to oxychlorination with oxygen and hydrochloric acid to form the foregoing compounds. The chlorinated methanes produced are hydrolyzed in the vapor phase to produce methanol, formaldehyde, formic acid and by-products, including carbon dioxide and hydrochloric acid, depending on the chlorination selectivity. Hydrochloric acid is produced or used in the halogenation of methane by either method and must be recovered, dehydrated by azeotropic distillation and recycled. Corrosion and other problems involved with the handling of chlorine and hydrochloric acid are substantial.
U.S. Pat. No. 3,172,915 awarded to Borkowski, et al. is directed to a process for converting methane to methanol. Borkowski discloses the chlorination of methane using ferric chloride at high temperatures to produce chloromethanes and hydrogen chloride. The process requires temperatures in the range of 220-800° C., more preferably 250-450° C., and long residence times, e.g., more than one hour. Further, the process is hindered by the production of a mixture of chlorination products, e.g., chloromethane, dichloromethane, trichloromethane and carbon tetrachloride, which must be separated before hydrolysis to methanol. Other disadvantages result from the energy required to dry the ferric chloride and from the corrosion and handling problems inherent with hydrochloric acid.
U.S. Pat. No. 5,243,098 awarded to Miller discloses another method for converting methane to methanol. In the Miller process the reaction of methane with cupric chloride produces chloromethane and hydrochloric acid. These intermediates are then reacted with steam and a catalyst containing magnesium oxide to produce methanol and magnesium chloride. Magnesium oxide is regenerated by treatment of the magnesium chloride by-product with air or oxygen. Cupric chloride is regenerated by treatment of the cuprous chloride by-product with air and hydrochloric acid. While these reactions proceed at favorable rates, attrition of the solid reactants, i.e., cupric and magnesium oxide, is significant. Special filters and processes were required to recover and regenerate these reactants in the required particle size. Miller also suggests cupric bromide and magnesium zeolite as alternative reactants. Because of the attrition of the reactants, difficulties associated with the handling of solids, and the special filters and processes required to regenerate the reactants, the Miller process has proved unsatisfactory. U.S. Pat. No. 5,334,777, also awarded to Miller, discloses a nearly identical process for converting ethane to ethylene glycol.
U.S. Pat. No. 5,998,679 awarded to Jorge Miller, discloses a process for converting alkanes and alkenes to the corresponding lower alkanols and diols. In the methods of the invention, a gaseous halogen (bromine) is produced by decomposing a metal halide in a liquid having a melting point below and a boiling point above the decomposition temperature of the metal halide. The preferred liquid is molten hydrated ferric chloride maintained at a temperature between about 37-280° C. The lower alkane or alkene is halogenated in a gas phase reaction with the halogen. The resulting alkyl halide or alkyl dihalide is contacted with a metal hydroxide, preferably an aqueous solution of ferric hydroxide, to regenerate the metal halide and produce the corresponding lower alkanol or diol. Problems with this process include low monohalogenation selectivity, and corrosiveness of the hydrated ferric halides, which may present a containment problem if the process is run at 280° C., where high pressures of steam are required to maintain ferric halide hydration. Finally, the process produces a great deal of water and HCl or HBr, all of which are difficult to separate on a large scale from the desired product methanol.
Published international patent application WO 00/07718, naming Giuseppe Bellussi, Carlo Perego, and Laura Zanibelli as inventors, discloses a method for directly converting methane and oxygen to methanol over a metal halides/metal oxides catalyst. This is not a catalyst in the true sense of the word, however, because the reaction by halogen transfer of halide from a metal halide (via reaction with methane) to a different metal oxide (giving the metal halide and methanol) occurs downstream. Eventually the halide is leached and the catalyst loses activity. Olah et al. (George A. Olah, et al.
J. Am. Chem. Soc
. 1985, 107, 7097-7105) discloses a method for converting methane to methanol via methyl halides (CH
3
Br and CH
3
Cl), which are then hydrolyzed to prepare methanol. In the process, CH
3
Br and CH
3
Cl are hydrolyzed over catalysts with excess steam generating a methanol, water, and HCl or HBr mixture. The separation of methanol (about 2% by mole) from HCl or HBr and water on an industry scale (2000 tons per day) requires an enormous amount of energy and generates a great deal of aqueous HCl and HBr waste. Aqueous HCl and HBr are very corrosive as well.
SUMMARY OF THE INVENTION
The present invention uses bromine or bromine containing compounds as intermediates to convert alkanes such as methane, ethane, propane, butane, and isobutane to ethers and alcohols by reaction with oxygen (or air) in a process. While the process can be used to convert a variety of alkanes, including methane, ethane, propane, butane, and isobutane, to their respective ethers and alcohols, the conversion of methane to methanol and dimethyl ether is illustrative.
Methane reacts with bromine over a catalyst to form CH
3
Br and HBr. CH
3
Br and HBr react with a metal oxide to form a variable mixture of dimethyl ether (DME), water, and methanol and the metal bromide. The metal oxides and molecular bromine are regenerated by reaction of metal bromide with air and/or oxygen. The regenerated bromine is recycled to react with methane while the regenerated metal oxide is used to convert more methyl bromide and HBr to methanol and DME, completing the reaction cycle.
The process can be easily carried out in a riser reactor. Compared to the current industrial two step process, in which methane and steam are first converted to CO and H
2
at 800° C. followed by conversion to methanol over a Zn—Cu—Al—C catalyst at approximately 70-150 atmospheres, the process of the present invention operates at roughly atmospheric pressure and relatively low temperatures, thereby providing a safe and efficient process for methanol production.
The present invention operates with solid/gas mixtures at atmospheric pressure. In the process, hydrogen halide is gaseous, and not as corrosive as when aqueous at high temperature. The reaction of Br
2
with an alkane, such as methane, ethane or propane, can reach more than 90% selectivity (at high conversion) to alkane-monobromide. The main side products, alkane dibromides such as CH
2
Br
2
, can be converted back to the monobromides by reaction with an alkane over another catalyst. Very few by-products are produced. During operation, most of the Br atoms are trapped in the solid state, making the system less corrosive. Another advantage is that in the process, DME and alcohol (CH
3
OH) are not produced as a mixture with excess water. By controlling reaction conditions, almost pure DME and/or methanol is obtained directly so that it is not necessary to separate CH
3
OH from water. The process is water free and does not generate wastewater, unlike the processes of the prior arts. Finally, in the present process,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated process for synthesizing alcohols and ethers from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated process for synthesizing alcohols and ethers from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated process for synthesizing alcohols and ethers from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2994541

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.