Integrated optimal model predictive control in a process...

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Optimization or adaptive control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S033000, C700S044000, C700S055000, C700S053000, C700S054000

Reexamination Certificate

active

06721609

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to process control systems and, more particularly, to optimizing the use of a model predictive controller in a process control system.
DESCRIPTION OF THE RELATED ART
Process control systems, such as distributed or scalable process control systems like those used in chemical, petroleum or other processes, typically include one or more process controllers communicatively coupled to each other, to at least one host or operator workstation and to one or more field devices via analog, digital or combined analog/digital buses. The field devices, which may be, for example valves, valve positioners, switches and transmitters (e.g., temperature, pressure and flow rate sensors), perform functions within the process such as opening or closing valves and measuring process parameters. The process controller receives signals indicative of process measurements made by the field devices and/or other information pertaining to the field devices, uses this information to implement a control routine and then generates control signals which are sent over the buses to the field devices to control the operation of the process. Information from the field devices and the controller is typically made available to one or more applications executed by the operator workstation to enable an operator to perform any desired function with respect to the process, such as viewing the current state of the process, modifying the operation of the process, etc.
In the past, conventional field devices were used to send and receive analog (e.g., 4 to 20 milliamp) signals to and from the process controller via an analog bus or analog lines. These 4 to 20 ma signals were limited in nature in that they were indicative of measurements made by the device or of control signals generated by the controller required to control the operation of the device. However, in the past decade or so, smart field devices including a microprocessor and a memory have become prevalent in the process control industry. In addition to performing a primary function within the process, smart field devices store data pertaining to the device, communicate with the controller and/or other devices in a digital or combined digital and analog format, and perform secondary tasks such as self-calibration, identification, diagnostics, etc. A number of standard and open smart device communication protocols such as the HART®, PROFIBUS®, WORLDFIP®, Device-Net®, and CAN protocols, have been developed to enable smart field devices made by different manufacturers to be used together within the same process control network.
Moreover, there has been a move within the process control industry to decentralize process control functions. For example, the all-digital, two-wire bus protocol promulgated by the Fieldbus Foundation, known as the F
OUNDATION
™ Fieldbus (hereinafter “Fieldbus”) protocol uses function blocks located in different field devices to perform control operations previously performed within a centralized controller. In particular, each Fieldbus field device is capable of including and executing one or more function blocks, each of which receives inputs from and/or provides outputs to other function blocks (either within the same device or within different devices), and performs some process control operation, such as measuring or detecting a process parameter, controlling a device or performing a control operation, like executing a proportional-integral-derivative (PID) control routine. The different function blocks within a process control system are configured to communicate with each other (e.g., over a bus) to form one or more process control loops, the individual operations of which are spread throughout the process and are, thus, decentralized.
Process controllers are typically programmed to execute different algorithms, sub-routines or control loops (which are all control routines) for each of a number of different loops defined for, or contained within a process, such as flow control loops, temperature control loops, pressure control loops, etc. Generally speaking, each such control loop includes one or more input blocks, such as an analog input (AI) function block, a single-output control block, such as a proportional-integral-derivative (PID) or a fuzzy logic control function block, and a single output block, such as an analog output (AO) function block. These control loops typically perform single-input/single-output control because the control block creates a single output used to control a single process input, such as a valve position, etc. However, in certain cases, the use of a number of independently operating, single-input/single-output control loops is not very effective because the process variables being controlled are affected by more than a single process input and, in fact, each process input may affect the state of many process outputs. An example of this might occur in, for example, a process having a tank being filled by two input lines, and being emptied by a single output line, each line being controlled by a different valve, and in which the temperature, pressure and throughput of the tank are being controlled to be at or near desired values. As indicated above, the control of the throughput, the temperature and the pressure of the tank may be performed using a separate throughput control loop, a separate temperature control loop and a separate pressure control loop. However, in this situation, the operation of the temperature control loop in changing the setting of one of the input valves to control the temperature within the tank may cause the pressure within the tank to increase, which, for example, causes the pressure loop to open the outlet valve to decrease the pressure. This action may then cause the throughput control loop to close one of the input valves, thereby affecting the temperature and causing the temperature control loop to take some other action. As will be understood in this example, the single-input/single-output control loops cause the process outputs (in this case, throughput, temperature and pressure) to behave in an unacceptable manner wherein the outputs oscillate without ever reaching a steady state condition.
Model predictive control or other types of advanced control are used to perform control in these types of situations wherein controlled process variables affect more than one process input and wherein each process input affects more than one process output. Generally, model predictive control is a multiple-input/multiple output control strategy in which the effects of changing each of a number of process inputs on each of a number of process outputs is measured and these measured responses are then used to create a model of the process. The model of the process is inverted mathematically and is then used as a multiple-input/multiple-output controller to control the process outputs based on changes made to the process inputs. In some cases, the process model includes a process output response curve for each of the process inputs and these curves may be created based on a series of, for example, pseudo-random step changes delivered to each of the process inputs. These response curves can be used to model the process in known manners. Model predictive control is known in the art and, as a result, the specifics thereof will not be described herein. However, model predictive control is described generally in Qin, S. Joe and Thomas A. Badgwell, “An Overview of Industrial Model Predictive Control Technology,”
AIChE Conference,
1996.
Model predictive control may further be used to optimize a selected process input variable such that the process is controlled to maximize and/or minimize the variable selected for optimization. Process input variables that are selected for optimization may include, for example, the process input variables that have the greatest impact on improving the economic value of the process (e.g. process throughput), or the variables that have the greatest impact on improving the quality of the process output.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated optimal model predictive control in a process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated optimal model predictive control in a process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated optimal model predictive control in a process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200463

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.