Integrated optics beam deflector assemblies utilizing side...

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S112040

Reexamination Certificate

active

06366720

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to integrated optical devices generally and more particularly to packaging of integrated optical devices.
BACKGROUND OF THE INVENTION
Various types of integrated optical devices are known. It is well known to pigtail an optical fiber onto an integrated optical device. Difficulties arise, however, when it is sought to pigtail multiple optical fibers onto integrated optical devices. When the optical modes in waveguides and optical fibers are similar, it is conventional to pigtail them by suitable alignment and butt coupling in an integrated optical device.
When there exists a substantial disparity in the respective optical modes of the optical fibers and the waveguides, optical elements must be employed to enable successful pigtailing. Particularly when the optical modes are relatively small, very high alignment accuracy is required in the alignment of three elements, the waveguide, the optical element and the fiber.
The following patents are believed to representative of the present state of the art: U.S. Pat. Nos. 5,737,138; 5,732,181; 5,732,173; 5,721,797; 5,712,940; 5,712,937; 5,703,973; 5,703,980; 5,708,741; 5,706,378; 5,611,014; 5,600,745; 5,600,741; 5,579,424; 5,570,442; 5,559,915; 5,907,649; 5,898,806; 5,892,857; 5,881,190; 5,875,274; 5,867,619; 5,859,945; 5,854,868; 5,854,867; 5,828,800; 5,793,914; 5,784,509; 5,835,659; 5,656,120; 5,482,585; 5,482,585; 5,625,726; 5,210,800; and 5,195,154.
SUMMARY OF THE INVENTION
The present invention seeks to provide a cost-effective and reliable integrated optics packaging technique and optical devices constructed thereby.
There is thus provided in accordance with a preferred embodiment of the present invention an optical device including at least one first substrate defining a multiplicity of optical fiber positioning grooves, a multiplicity of optical fibers fixed in each of the multiplicity of optical fiber positioning grooves on the at least one first substrate, whereby the multiplicity of optical fibers lie in an optical fiber plane and the ends of each of the multiplicity of optical fibers lie substantially in a first predetermined arrangement in the optical fiber plane, a second substrate fixed onto the at least one first substrate such that an edge of the second substrate extends beyond the ends of each of the multiplicity of optical fibers, a lens assembly including a third substrate, and a lens fixed onto the third substrate, the lens assembly being mounted onto the second substrate such that the lens lies in a second predetermined arrangement with respect to the ends of each of the multiplicity of optical fibers, whereby the separation between the lens and the ends of each of the multiplicity of optical fibers is defined in a plane perpendicular to the optical fiber plane to a first degree of accuracy and the separation between the lens and the ends of each of the multiplicity of optical fibers is defined in the optical fiber plane to a second degree of accuracy, less than the first degree of accuracy.
Further in accordance with a preferred embodiment of the present invention the at least one first substrate comprises a pair of first substrates having the optical fiber positioning grooves thereon arranged in mutually facing relationship.
Still further in accordance with a preferred embodiment of the present invention the lens comprises a cylindrical lens which extends along a cylindrical lens axis. Preferably the cylindrical lens axis lies parallel to the optical fiber plane.
Additionally in accordance with a preferred embodiment of the present invention the third substrate is fixed in engagement with the edge of the second substrate by an adhesive. Preferably the third substrate is fixed in engagement with the edge of the second substrate by an adhesive.
Additionally in accordance with a preferred embodiment of the present invention the multiplicity of optical fiber positioning grooves are mutually parallel. Preferably the multiplicity of optical fiber positioning grooves are arranged in a fan arrangement in order to compensate for optical aberrations.
There is also provided in accordance with a preferred embodiment of the present invention a method for producing an optical device including the steps of forming a multiplicity of optical fiber positioning grooves on at least one first substrate, placing each of a multiplicity of optical fibers in each of the multiplicity of optical fiber positioning grooves on the at least one first substrate, retaining each of the multiplicity of optical fibers in each of the multiplicity of optical fiber positioning grooves on the at least one first substrate, such that the multiplicity of optical fibers lie in an optical fiber plane, precisely defining the ends of each of the multiplicity of optical fibers so that they all lie substantially in a first predetermined arrangement, fixing a second substrate onto the at least one first substrate such that an edge of the second substrate extends beyond the ends of each of the multiplicity of optical fibers, fixing a lens onto a third substrate, precisely aligning the third substrate in engagement with the edge of the second substrate such that the lens lies in a second predetermined arrangement with respect to the ends of each of the multiplicity of optical fibers, and fixing the third substrate in engagement with said edge of the second substrate such that the lens lies in a second predetermined arrangement with respect to the ends of each of the multiplicity of optical fibers, whereby the separation between the lens and the ends of each of the multiplicity of optical fibers is defined in a plane perpendicular to the optical fiber plane to a first degree of accuracy and the separation between the lens and the ends of each of the multiplicity of optical fibers is defined in the optical fiber plane to a second degree of accuracy, less than the first degree of accuracy. Preferably the step of fixing the third substrate in engagement with the edge employs an adhesive and the step of precisely aligning the third substrate in engagement with the edge of the second substrate employs an external positioner.
Further in accordance with a preferred embodiment of the present invention the at least one first substrate includes a pair of first substrates having the optical fiber positioning grooves thereon arranged in mutually facing relationship.
Additionally or alternatively the lens includes a cylindrical lens which extends along a cylindrical lens axis. Preferably the precisely aligning step and the fixing step arrange the cylindrical lens such that the cylindrical lens axis lies parallel to the optical fiber plane.
Preferably the multiplicity of optical fiber positioning grooves are mutually parallel.
Alternatively accordance with a preferred embodiment of the present invention the multiplicity of optical fiber positioning grooves are arranged in a fan arrangement in order to compensate for optical aberrations.
There is further provided in accordance with a preferred embodiment of the present invention an optical device including at least one optical substrate having formed thereon at least one waveguide, at least one base substrate onto which the at least one optical substrate is fixed, and at least one optical module, precisely positioned onto each at least one base substrate and fixed thereto by means of side mounting blocks thereby to preserve precise mutual alignment of the at least one module and the at least one waveguide.
Further in accordance with a preferred embodiment of the present invention the at least one optical module includes a lens or includes a cylindrical lens, and at least one optical fiber.
Preferably the at least one optical module also includes a lens which is operative to couple light from the at least one fiber to the at least one waveguide and also including the step of positioning output optics including at least one output fiber on the at least one base substrate so as to receive light from the at least one waveguide. Additionally or alternatively the lens is operative

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated optics beam deflector assemblies utilizing side... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated optics beam deflector assemblies utilizing side..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated optics beam deflector assemblies utilizing side... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2834816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.