Integrated optic devices and photosensitive sol-gel process...

Optical waveguides – Planar optical waveguide – Thin film optical waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S014000, C385S037000

Reexamination Certificate

active

11386515

ABSTRACT:
A photosensitive sol-gel film containing an organometallic photosensitizer is deposited on the oxide containing surface layer of a silicon substrate. A pattern of white or ultra violet light incident to the photosensitive sol-gel film results in the unbinding of the photosensitizer from the exposed regions of the sol-gel film. A subsequent succession of first and second heating steps results in, first, the removal of the photo sensitizer constituents from the exposed regions of the sol-gel film and, second, the removal of the organic constituents from the exposed regions, resulting in regions doped with a metal oxide with non linear optical properties, such as semicondutive, etc. properties. Optical switches, couplers, waveguides, splitters, interferometers wavelength division multiplexer, Bragg gratings and more can be fabricated. A glass substrate also may be employed, instead of a silicon, in which case a separate silicon oxide surface layer is unnecessary.

REFERENCES:
patent: 4725110 (1988-02-01), Glenn et al.
patent: 5080503 (1992-01-01), Najafi et al.
patent: 5080962 (1992-01-01), Hench
patent: 5151958 (1992-09-01), Honkanen
patent: 5265185 (1993-11-01), Ashley
patent: 5360834 (1994-11-01), Popall et al.
patent: 5574807 (1996-11-01), Snitzer
patent: 5585640 (1996-12-01), Huston et al.
patent: 5620495 (1997-04-01), Aspell et al.
patent: 6054253 (2000-04-01), Fardad et al.
patent: 6103363 (2000-08-01), Boire et al.
patent: 6115518 (2000-09-01), Clapp
patent: 6158245 (2000-12-01), Savant
patent: 6268089 (2001-07-01), Chandross et al.
patent: 6665014 (2003-12-01), Assadi et al.
patent: 2218273 (1999-04-01), None
patent: 99/06873 (1999-02-01), None
Mendoza E.A., Ferrell D.J., Syracuse S.J., Khalil A.N., Lieberman R.A., “Photolithography of Integrated Optice Devices in Sol-Gel Glasses,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2288, pp. 580-588 (1999).
Najafi, S.I., Touam T., Sara R., Andrews M.P., Fardad M.A., “Sol-Gel Glass Waveguide and Grating on Silicon,” Journal of Lightwave Technology, vol. 16, No. 9 (1998).
McEntee J. “Sol-Gel Devices ‘will meet cost targets of fibre to the home’,” Opto & Laser Europe, Issue 31, p. 5 (1996).
Coudray, P., Chisham, J., Malek-Tabrizi, A., Li, C.-Y., Andrews, M.P., Peyghambarian, N., Najafi, S.I., “Ultraviolet Light Imprinted Sol-Gel Silica Glass Waveguide Devices on Silicon,” Optics Comm., 128(1-3) 19-22 (1996).
Coudray, P., Chisham, J., Andrews, M.P., Najafi, S.I., “Ultraviolet Light Imprinted Sol-Gel Silica Glass Low-Loss Waveguides For Use At 1.55 μm,” Opt. Eng. 36(4) 1234-1240 (1997).
Fardad, A., Andrews, M., Milova, G., Malek-Tabrizi A., Najafi, I., “Fabrication of Ridge Waveguides:: A New Solgel Route,” Applied Optics, vol. 37, No. 12., pp. 2429-2434 (1998).
Najafi, S.I., Armenise, M.N., “Organoaluminophosphate sol-gel silica glass thin films for integrated optics,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2997 pp. 79-84 (1997).
Cindrich I., Lee, S.H., Sutherland, R. L., “Adapting Existing E-Beam Writers to Write HEBS-Glass Gray Scale Masks,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 3633 pp. 35-45 (1999).
Kley, E-B., “Continuous Profile Writing by Electron and Optical Lithography,” Microelectronic Engineering, 33 pp. 261-298 (1997).
Syms, R.R.A., “Silica-On Silicon Integrated Optics,” Advances in Integrated Optics, pp. 121-150 (1994).
Najafi, S.I., Andrews, M.P., Fardad, M.A., Milova, G., Tahar, T., Coudray, P., “UV-Light Imprinted Surface, Ridge and Buried Sol-Gel Glass Waveguides and Devices on Silicon,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2954 pp. 100-104 (1996).
Holmes, A.S., Syms, R.R.A., “Fabrication of Low-Loss Channel Waveguides in Sol-Gel Glass on Silicon Substrates,” Advanced Materials in Optics, Electro-Optics and Communication Technologies (1995).
Holmes, A.S., Syms, R.R.A., Li, M., Green M., “Fabrication of Buried Channel Waveguides on Silicon Substrates Using Spin-On Glass,” Applied Optics, vol. 32, No. 25 pp. 4916-4921 (1993).
Kawachi, M., “Silica Waveguides on Silicon and Their Application to Integrated-Optic Components,” Optical and Quantum Electronics, vol. 22, No. 5, pp. 391-416 (1990).
Ballato, J., Dejneka, M., Riman, R.E., Snitzer, E., Zhou, W., “Sol-Gel Synthesis of Rare-Earth-Doped Fluoride Glass Thin Films,” Journal of Materials Research, vol. 11, No. 4., pp. 841-849 (1996).
Yang, L., Saavedra, S.S., Armstrong, N.R., Hayes, J., “Fabrication and Characterization of Low-Loss, Sol-Gel Planar Waveguides,” Anal. Chem. vol. 66, No. 8, pp. 1254-1263 (1994).
Schmidt, H., “Thin Films, the Chemical Processing up to Gelation,” Structure and Bonding, vol. 77, pp. 119-151 (1992).
Chisham, J.E., Andrews, M.P., Li, C-Y., Najafi, S.I., Makek-Tabrizi, A., “Gratings Fabrication by Ultraviolet Light Imprinting and Embossing in a Sol-Gel Silica Glass,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2695, pp. 52-56 (1996).
Svalgaard, M., Poulsen, C.V., Bjarklev A., Poulsen, O., “Direct UV Writing of Buried Singlemode Channel Waveguides in Ge-Doped Silica Films,” Electronic Letters, vol. 30, No. 17, pp. 1404-1403 (1994).
Andrews, M.P., Kanigan T., Najafi, S.I., “Auto-Embossed Bragg Grating From Self-Organizing Polymers: Chemical Tuning of Periodicity and Photoinduced Anisotropy,” Proc. SPIE-Int. Soc. Opt. Eng., Vol. 2695, pp. 4-15 (1996).
Najafi, S. I., Li, C-Y., Chisham, J., Andrews, M.P., Coudray, P., Malek-Tabrizi, A., Peyghambarian, N., “Ultraviolet Light Imprinted Sol-Gel Silica Glass Channel Waveguides on Silicon,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2695, pp. 38-41 (1996).
Brinker, C.J., Scherer, G.W., “The Physics and Chemistry of Sol-Gel Processing,” Sol-Gel Science, Academic Press, Inc. pp. 864-1879, Not Date.
Li, C.-Y., Chisham, J., Andrews, M., Najafi, S.I., Mackenzie, J.D., Peyghambarian, N., “Sol-Gel Integrated Optical Coupler by Ultraviolet Light Imprinting,” Electronic Letters, vol. 31, No. 4, pp. 271-272 (1995).
Andrews, M.P., “An Overview of Sol-Gel Guest-Host Materials Chemistry for Optical Devices,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 2997, pp. 48-59 (1997).
Rösch, O.S., Bernhard, W., Müller-Fiedler, R., Dannberg, P., Bräuer, A., R. Buestrich, R., Popall, M., “High Performance Low Cost Fabrication Method for Integrated Polymer Optical Devices,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 3799, pp. 214-224, no Date.
Roscher, C., Buestrich R., Dannberg, P., Rösch, O., Popall, M., “New Inorganic-Organic Hybrid Polymers for Integrated Optics,” Mat. Res. Soc. Symp. Proc. vol. 519, pp. 239-244 (1998).
Mendoze, E.A., “Photolithography of Integrated Optic Devices in Porous Glasses,” UMI Dissertation Services (1992).
Mendoza, A., Wolkow, E., Sunil, D., Wong, P., Sokolow, J., Rafailovich, M., den Boer, M., Gafney, H., “A Comparion of Iron Oxides Photodeposited in Porous Vycor Glass and Tetramethoxysilane/Methanol/Water Xerogels,” Langmuir, vol. 7, No. 12, pp. 993-4009 (1991).
Che, T., Soskey, P., Banash, M., Caldwell, M., McCallum, I., Mininni, R., Warden, V., “Optimization of a Gel Derived Gradient Index Material,” Proc. SPIE-Int. Soc. Opt. Eng., vol. 1758, pp. 193-204 (1992).
Gafney, H., “A Photochemical Approach to Integrated Optics,” J. Macromol. Sci-Chem. vol. A27(9-11), pp. 1187-1202 (1990).
Simmons, K., Stegeman, G., Potter, B., Simmons, J., “Photosensitivity of Solgel-Derived Germanoscilicate Planar Waveguides,” Optics Letters, vol. 18, No. 1, pp. 25-27 (1993).
Mendoza, E., Gafney, H., “Photolithography of Integrated Optic Devices in Porous Glasses,” Nonlinear Optical Materials, CRC Press, eds. Kuhn, H., Robillard, J., Part V, pp. 178-191 (1992).
Mendoza, E., Gafney, H., “Photolithographic Imaging of Planar Optical Waveguides and Integrated Optic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated optic devices and photosensitive sol-gel process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated optic devices and photosensitive sol-gel process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated optic devices and photosensitive sol-gel process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3896592

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.