Liquid purification or separation – Processes – Chromatography
Reexamination Certificate
2000-12-21
2002-08-13
Therkorn, Ernest G. (Department: 1723)
Liquid purification or separation
Processes
Chromatography
C210S748080, C210S198200, C210S243000, C250S288000, C204S450000, C436S161000
Reexamination Certificate
active
06432311
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to an integrated miniaturized chemical analysis system fabricated using microelectromechanical systems (MEMS) technology. In particular, the present invention relates to an integrated monolithic microfabricated electrospray and liquid chromatography device. This achieves a significant advantage in terms of high-throughput analysis by mass spectrometry, as used, for example, in drug discovery, in comparison to a conventional system.
BACKGROUND OF THE INVENTION
New developments in drug discovery and development are creating new demands on analytical techniques. For example, combinatorial chemistry is often employed to discover new lead compounds, or to create variations of a lead compound. Combinatorial chemistry techniques can generate thousands or millions of compounds (combinatorial libraries) in a relatively short time (on the order of days to weeks). Testing such a large number of compounds for biological activity in a timely and efficient manner requires high-throughput screening methods which allow rapid evaluation of the characteristics of each candidate compound.
The compounds in combinatorial libraries are often tested simultaneously against a molecular target. For example, an enzyme assay employing a colorimetric measurement may be run in a 96-well plate. An aliquot of enzyme in each well is combined with tens or hundreds of compounds. An effective enzyme inhibitor will prevent development of color due to the normal enzyme reaction, allowing for rapid spectroscopic (or visual) evaluation of assay results. If ten compounds are present in each well, 960 compounds can be screened in the entire plate, and one hundred thousand compounds can be screened in 105 plates, allowing for rapid and automated testing of the compounds.
Often, however, determination of which compounds are present in certain portions of a combinatorial library is difficult, due to the manner of synthesis of the library. For example, the “split-and-pool” method of random peptide synthesis in U.S. Pat. No. 5,182,366, describes a way of creating a peptide library where each resin bead carries a unique peptide sequence. Placing ten beads in each well of a 96-well plate, followed by cleavage of the peptides from the beads and removal of the cleavage solution, would result in ten (or fewer) peptides in each well of the plate. Enzyme assays could then be carried out in the plate wells, allowing 100,000 peptides to be screened in 105 plates. However, the identity of the peptides would not be known, requiring analysis of the contents of each well.
The peptides could be analyzed by removing a portion of solution from each well and injecting the contents into a separation device such as liquid chromatography or capillary electrophoresis instrument coupled to a mass spectrometer. Assuming that such a method would take approximately 5 minutes per analysis, it would require over a month to analyze the contents of 105 96-well plates, assuming the method was fully automated and operating 24 hours a day.
This example illustrates the critical need for a method for rapid analysis of large numbers of compounds or complex mixtures of compounds, particularly in the context of high-throughput screening. Techniques for generating large numbers of compounds, for example through combinatorial chemistry, have been established. High-throughput screening methods are under development for a wide variety of targets, and some types of screens, such as the calorimetric enzyme assay described above and ELISA (enzyme linked immunosorbent assay) technology, are well established. As indicated in the example above, a bottleneck often occurs at the stage where multiple mixtures of compounds, or even multiple individual compounds, must be characterized.
This need is further underscored when current developments in molecular biotechnology are considered. Enormous amounts of genetic sequence data are being generated through new DNA sequencing methods. This wealth of new information is generating new insights into the mechanism of disease processes. In particular, the burgeoning field of genomics has allowed rapid identification of new targets for drug development efforts. Determination of genetic variations between individuals has opened up the possibility of targeting drugs to individuals based on the individual's particular genetic profile. Testing for cytotoxicity, specificity, and other pharmaceutical characteristics could be carried out in high-throughput assays instead of expensive animal testing and clinical trials. Detailed characterization of a potential drug or lead compound early in the drug development process thus has the potential for significant savings both in time and expense.
Development of viable screening methods for these new targets will often depend on the availability of rapid separation and analysis techniques for analyzing the results of assays. For example, an assay for potential toxic metabolites of a candidate drug would need to identify both the candidate drug and the metabolites of that candidate. An assay for specificity would need to identify compounds which bind differentially to two molecular targets such as a viral protease and a mammalian protease.
It would therefore be advantageous to provide a method for efficient proteomic screening in order to obtain the pharmacokinetic profile of a drug early in the evaluation process. An understanding of how a new compound is absorbed in the body and how it is metabolized can enable prediction of the likelihood for an increased therapeutic effect or lack thereof.
Given the enormous number of new compounds that are being generated daily, an improved system for identifying molecules of potential therapeutic value for drug discovery is also critically needed.
It also would be desirable to provide rapid sequential analysis and identification of compounds which interact with a gene or gene product that plays a role in a disease of interest. Rapid sequential analysis can overcome the bottleneck of inefficient and time-consuming serial (one-by-one) analysis of compounds.
Accordingly, there is a critical need for high-throughput screening and identification of compound-target reactions in order to identify potential drug to candidates.
Microchip-based separation devices have been developed for rapid analysis of large numbers of samples. Compared to other conventional separation devices, these microchip-based separation devices have higher sample throughput, reduced sample and reagent consumption and reduced chemical waste. The liquid flow rates for microchip-based separation devices range from approximately 1-300 nanoliters (nL) per minute for most applications.
Examples of microchip-based separation devices include those for capillary electrophoresis (CE), capillary electrochromatography (CEC) and high-performance liquid chromatography (HPLC). See Harrison et al, Science 1993, 261, 859-897; Jacobson et al. Anal. Chem. 1994, 66, 1114-1118; and Jacobson et al. Anal. Chem. 1994, 66, 2369-2373. Such separation devices are capable of fast analyses and provide improved precision and reliability compared to other conventional analytical instruments.
Liquid chromatography (LC) is a well-established analytical method for separating components of a fluid for subsequent analysis and/or identification. Traditionally, liquid chromatography utilizes a separation column, such as a cylindrical tube, filled with tightly packed beads, gel or other appropriate particulate material to provide a large surface area. The large surface area facilitates fluid interactions with the particulate material, and the tightly packed, random spacing of the particulate material forces the liquid to travel over a much longer effective path than the length of the column. In particular, the components of the fluid interact with the stationary phase (the particles in the liquid chromatography column) as well as the mobile phase (the liquid eluent flowing through the liquid chromatography column) based on the partition coefficients for each of th
Davis Timothy J.
Galvin Gregory J.
Moon James E.
Brown & Michaels PC
Kionix, Inc.
Therkorn Ernest G.
LandOfFree
Integrated monolithic microfabricated electrospray and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated monolithic microfabricated electrospray and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated monolithic microfabricated electrospray and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2960286