Integrated hydrocarbon reforming system and controls

Gas: heating and illuminating – Apparatus for converting or treating hydrocarbon gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C048S061000, C048S06200R, C048S063000, C048S119000, C048S120000, C048S128000, C422S187000, C422S198000, C422S198000, C422S198000, C422S211000, C422S198000, C422S235000

Reexamination Certificate

active

06641625

ABSTRACT:

TECHNICAL FIELD
The present invention is generally related to an integrated hydrocarbon fuel reforming system for reforming a gaseous or liquid hydrocarbon fuel to produce a hydrogen-rich product stream used in, among other things, hydrogen fuel cells. More particularly, the invention is directed to an improved integrated hydrocarbon reforming system, including, an autothermal reformer having distinct zones for partial oxidation reforming and steam reforming, and also having an integrated shift bed for reducing carbon monoxide in the product stream, a preferential oxidation reactor, and an auxiliary reactor.
BACKGROUND OF THE INVENTION
Reforming of hydrocarbon fuels to make hydrogen is well known in the art. Conventionally, hydrocarbons are reformed predominately in large-scale industrial facilities providing hydrogen for bulk storage and redistribution, or producing hydrogen as an on-line, upstream reagent for another large-scale chemical process. For the most part, these prior processes operate continuously and at steady-state conditions.
More recently, however, a strong interest has developed in providing hydrocarbon-reforming reactors integrated with an end use of the hydrogen. Also, there is a strong interest to develop a low-cost, small-scale source for hydrogen that can replace the need for storing hydrogen gas on site or on board. More particularly, a great interest has developed in providing reactors for producing hydrogen, which can be integrated with a fuel cell which uses hydrogen as a fuel source to generate electricity. Such hydrogen generator/fuel cell systems are being pursued for stationary uses such as providing electrical power to a stationary facility (home or business), for portable electric power uses, and for transportation.
The use of fuel cells, such as polymer electrolyte membrane fuel cells (PEM-FC), has been proposed for many applications, specifically including electrical vehicular power plants used to replace internal combustion engines. Electrochemical fuel cells convert fuel and oxidant to electricity and reaction product. Hydrogen is most commonly used as the fuel and is supplied to the fuel cell's anode. Oxygen (commonly as air) is the cell's oxidant and is supplied to the cell's cathode. The reaction product is water.
Efficiency and low emissions are two benefits of fuel cell systems. A system running near 40% efficiency will offer the opportunity to significantly reduce fuel consumption and CO
2
production compared to conventional gasoline internal combustion engines. Perhaps more importantly, it has been shown that fuel cell systems, even when running with an onboard fuel processor, offer an opportunity to greatly reduce emissions of NOx, carbon monoxide, and hydrocarbons in automotive applications.
There are many technical requirements for reactors used in such applications, which are not required of traditional large or small-scale hydrogen generating reactors. For example, it is of particular interest to have such a system where the fuel cell can provide “power on demand.” Hence, hydrogen must be produced at required variable levels on demand. In other words, the hydrogen producing reactors must be sufficiently dynamic to follow the load. It is also of interest that such systems perform well upon start-up and shutdown cycling. In particular, it is desirable to have these integrated systems be stable through repeated on-off cycling including being ready to come back on-line in a relatively short time.
Another marked difference between proposed integrated systems and traditional reactors is that there must be sufficient processing in the integrated system itself, of the hydrocarbon feed stock so as to not only give a yield of hydrogen sufficient to meet the demand, but also to minimize byproducts of reaction including contaminants. In large-scale reactor systems, which produce enormous volumes and run continuously; space, weight, and cost of auxiliary systems is not so critical as in the integrated, smaller-scale reformers, especially those proposed for portable power or transportation applications. For example, carbon monoxide may be considered an undesirable reaction product on board a fuel cell powered automobile. However, in a steady state conventional process, the carbon monoxide can easily be handled by auxiliary separation systems, and may in fact be welcomed for its use in a synthesis gas to make acetic acid, dimethyl ether, and alcohols.
In short, the challenge for the smaller-scale, dynamic, integrated processors is the idea that what goes in the reformer, must come out at the same end as the desired hydrogen gas. Accordingly, processing has to be more complete and efficient, while it must also be cost effective, lightweight, and durable. The processing must be sufficient to reduce or eliminate species in the product gas which are harmful to the end use (for example, fuel cells) or other down stream components.
Another challenge exists for the proposed integrated systems with respect to the hydrocarbon feed stock. To be of maximum benefit, the proposed integrated systems should be able to use existing infrastructure fuels such as gasoline or diesel fuels. These fuels were not designed as a feed stock for generating hydrogen. Because of this, integrated systems are challenged to be able to handle the wide variety of hydrocarbons in the feed stock. For example, certain reforming byproducts such as olefins, benzene, methyl amide, and higher molecular weight aromatics can cause harm to catalysts used in reforming or purifying steps and may harm the fuel cell itself. Impurities in these fuels such as sulfur and chlorine can also be harmful to reactor catalysts and to the fuel cell.
It is also important to note, that a natural byproduct of hydrocarbon reforming is carbon monoxide. Carbon monoxide can poison proton exchange membrane fuel cells, even at very low concentrations of, for example, less than 100 ppm. Typical carbon monoxide levels exiting a fuel processing assembly (“FPA”) are about 2,000 to 5,000 ppm. This poses a problem for an integrated reactor system that is not faced by traditional reforming processes where significant carbon monoxide concentrations are either a useful co-product, or can be separated from the product gas without undue burden on the system economics as a whole.
Also, as noted above, integrated systems proposed to date are expected to transfer the total of the reformate to a fuel cell. Accordingly, techniques which separate carbon monoxide from hydrogen, such as pressure swing adsorption (“PSA”) or hydrogen permeable membrane separation, have the deficit of having to provide an alternate means for disposal or storage of the carbon monoxide. Both of the aforementioned techniques also suffer in efficiency as neither converts the carbon monoxide (in the presence of water) to maximize hydrogen production. PSA also suffers from high cost and space requirements, and presents a likely unacceptable parasitic power burden for portable power or transportation applications. At the same time, hydrogen permeable membranes are expensive, sensitive to fouling from impurities in the reformate, and reduce the total volume of hydrogen in the reformate stream.
One known method of reforming gaseous or liquid hydrocarbon fuels is by catalytic steam reforming. In this process a mixture of steam and the hydrocarbon fuel is exposed to a suitable catalyst at a high temperature. The catalyst used is typically nickel and the temperature is usually between about 700° C. and about 1000° C. In the case of methane, or natural gas, hydrogen is liberated in a catalytic steam reforming process according to the following overall reaction:
CH
4
+H
2
O→CO+3H
2
  (1)
This reaction is highly endothermic and requires an external source of heat and a source for steam. Commercial steam reformers typically comprise externally heated, catalyst filled tubes and rarely have thermal efficiencies greater than about 60%.
Another conventional method of reforming a gaseous or liquid hydrocarbon fuel is partial oxi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated hydrocarbon reforming system and controls does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated hydrocarbon reforming system and controls, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated hydrocarbon reforming system and controls will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172029

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.