Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – With particular semiconductor material
Patent
1995-11-09
1997-10-21
Meier, Stephen
Active solid-state devices (e.g., transistors, solid-state diode
Incoherent light emitter structure
With particular semiconductor material
257104, H01L 3300, H01L 29861, H01L 2988
Patent
active
056799659
ABSTRACT:
An n-on-p integrated heterostructure device of Group III-V nitride compound semiconductor materials is formed on a substrate of p-type monocrystalline silicon carbide and includes a buffer layer of p-type aluminum nitride or p-type aluminum gallium nitride on the substrate. The n-on-p integrated heterostructure includes continuously graded layers of aluminum gallium nitride to reduce or eliminate conduction band or valence band offsets. A multiple quantum well may also be used instead of the continuously graded layer. The n-on-p integrated heterostructure device may include lasers, LEDs and other devices. A p-type negative electron affinity (NEA) photoelectron emitter device may also be provided, including a p-type monocrystalline silicon carbide substrate, a layer of p-type aluminum nitride or aluminum gallium nitride, a continuously graded layer of aluminum gallium nitride and a layer of p-type aluminum gallium nitride. A surface enhancement layer may be located on the layer of aluminum gallium nitride. A multiple quantum well may be used instead of the continuously graded layer of aluminum gallium nitride. An ultraviolet-sensitive NEA device may thereby be provided.
REFERENCES:
patent: 4801984 (1989-01-01), Woodall
patent: 4918497 (1990-04-01), Edmond
patent: 5290393 (1994-03-01), Nakamura
patent: 5294833 (1994-03-01), Schetzina
patent: 5323022 (1994-06-01), Glass et al.
patent: 5351255 (1994-09-01), Schetzina
patent: 5366927 (1994-11-01), Schetzina
patent: 5385862 (1995-01-01), Moustakas
patent: 5393993 (1995-02-01), Edmond et al.
Wongchotiqul et al., Low Resistivity Aluminum Nitride: Carbon (AIN:C) Films Grown by Metal Organic Chemical Vapor Deposition, IEEE Abstracts: Topical Workshop on III-V Nitrides, Sep. 21, 23, 1995, Nagoya Congress Center, Nagoya Japan.
Zhang et al., p-AIN
-6H-SiC Heterojunction Diodes, Technical Digest of Int'l Conf. on SiC and Related Materials--ICSCRM -95--Kyota, Japan, Sep. 18-21, 1995.
Wongchotiqul et al., Low Resistivity Aluminum Nitride: Carbon (AIN:C) Films Grown by Metal Organic Chemical Vapor Deposition, Late News Papers, 1995 Electronic Materials Conference, University of Virginia, Charlottesville, VA, Jun. 21-23,1995.
Ng, "Negative-Electron-Affinity Photocathode", Complete Guide to Semiconductor Devices, Chapter 57, McGraw-Hill Series in Electrical and Computer Engineering, McGraw-Hill (New York), 1995.
Molnar et al., Blue-Violet Light Emitting Gallium Nitride p-n Junctions Grown by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy, Applied Physics Letters, vol. 66, No. 3, Jan. 16, 1995, pp. 268-270.
Segall et al., Band-Offsets and Related Properties of III-N's, 2nd Workshop on Wide Bandgap Nitrides, Oct. 17-18, 1994, St. Louis, MO, program schedule for oral presentation.
T. Chu et al., The Role of Barium in the Heteroepitaxial Growth of Insulator and Semiconductors on Silicon, Materials Research Society Symposium Proceedings, vol. 334, pp. 501-506 (1994).
Morkoc et al., Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor Device Technologies, Journal of Applied Physics, vol. 76, No. 3, Aug. 1, 1994, pp. 1363-1398.
Baur et al., Determination of the GaN/AlN Band Offset Via the (-/0) Acceptor Level of Iron, Applied Physics Letters, vol. 65, No. 17, Oct. 24, 1994, pp. 2211-2213.
Martin et al., Valence-Band Discontinuity Between GaN and AlN Measured by X-Ray Photoemission Spectroscopy, Applied Physics Letters, vol. 65, No. 5, Aug. 1, 1994, pp. 610-612.
Benjamin et al., Observation of a Negative Electron Affinity for Heteroepitaxial AlN on .alpha.(6H)-SiC(0001), Applied Physics Letters, vol. 64, 24, Jun. 13, 1994, pp. 3288-3290.
Lin et al., Nonalloyed Ohmic Contacts on GaN using InN/GaN Short-Period Superlattices, Applied Physics, Letters, vol. 64, No. 19, May 9, 1994, pp. 2557-2559.
A.R. Powell et al., New Approach to the Growth of Low Dislocation Relaxed SiGe Material, Applied Physics Letters, vol. 64, No. 14, Apr. 4, 1994, pp. 1856-1858.
Nakamura et al., Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes, Applied Physics Letters, vol. 64, No. 13, Mar. 28, 1994, pp. 1687-1689.
Amano et al., Room-Temperature Violet Stimulated Emission from Optically Pumped AnGaN/GaInN Double Heterostructure, Applied Physics Letters, vol. 64, No. 11, Mar. 14, 1994, pp. 1377-1379.
Yung et al., Observation of Stimulated Emission in the Near Ultraviolet from a Molecular Beam Epitaxy Grown GaN Film on Sapphire in a Vertical-Cavity, Single Pass Configuration, Applied Physics Letters, vol. 64, No. 19, Feb. 28, 1994 pp. 1135-1137.
Lin et al., Low Resistance Ohmic Contacts on Wide Band-Gap GaN, Appl. Phys. Lett., vol. 64, No. 8, Feb. 21, 1994, pp. 1003-1005.
Khan et al., High Electron Mobility Transistor Based on a GaN-Al.sub.x Ga.sub.1-x N Heterojunction, Applied Physics Letters, vol. 63, No. 9, Aug. 30, 1993, pp. 1214-1215.
Foresi et al., Metal Contacts to Gallium Nitride, Applied Physics Letters, vol. 62, No. 22, pp. 2859-2861, May 31, 1993.
Khan et al., Metal Semiconductor Field Effect Transistor Based on Single Crystal GaN, Applied Physics Letters, vol. 62, No. 15, Apr. 12, 1993, pp. 1786-1787.
Strite et al., GaN, AlN, and InN: A Review, Journal of Vacuum Science and Technology B, vol. 10, No. 4, Jul./Aug. 1992, pp. 1237-1266.
Hu, Misfit Dislocations and Critical Thickness of Heteroepitaxy, Journal of Applied Physics, vol. 69, No. 11, Jun. 1, 1991, pp. 7901-7903.
Tsao, et al., Excess Stress and the Stability of Strained Heterostructures, Applied Physics Letters, vol. 53, No. 10, Sep. 5, 1988, pp. 848-850.
Amano et al., Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer, Applied Physics Letters, vol. 48, No. 5, Feb. 3, 1986, pp. 353-355.
People et al., Calculation of Critical Layer Thickness versus Lattice Mismatch for Ge.sub.x Si.sub.1-x /Si Strained Layer Heterostructures, Applied Physics Letters, vol. 47, No. 3, Aug. 1, 1985, pp. 322-324.
Burle Industries, Inc., "Photomultiplier Handbook: Theory, Design, Application", 1980, p.28.
Matthews et al., Defects in Epitaxial Multilayers-III. Preparation of Almost Perfect Multilayers, Journal of Crystal Growth, vol. 32, pp. 265-273, 1976.
Matthews et al., Defects in Epitaxial Multilayers-II. Dislocation Pile-Ups, Threading Dislocations, Slip Lines and Cracks, Journal of Crystal Growth, vol. 29, pp. 273-280, 1975.
Matthews et al., Defects in Epitaxial Multilayers-I. Misfit Dislocations, Journal of Crystal Growth, vol. 27, pp.118-125, 1974.
Detchprohm et al., "Hydride Vapor Phase Epitaxial Growth of a High Quality GaN Film," Applied Physics Letters, vol. 61, no. 22, 1992.
Nakamura, "Blue/Green Semiconductor Laser", 1996 LEOS Meeting, Paper M1.1, pp. 3-4.
Nakamura et al., "InGaN Multi-Quantum-Well Structure Laser Diodes Grown on MgAl.sub.2 O.sub.4 Substrates", Appl. Phys. Lett., V. 68, No. 15, Apr. 8, 1996, pp. 2105-2107.
Nakamura et al., "InGaN-Based Multi-Quantum-Well-Structure Laser Diodes", Jpn. J. Appl. Phys., vol. 35, Part 2, No. 1B, Jan. 15, 1996, pp. L74-L76.
Koike et al., "Light-Emitting Devices Based on Gallium Nitride and Related Compound Semiconductors", Mat. Res. Soc. Symp. Proc., vol. 395, 1996, pp. 889-895.
Barnes et al., "Calculations of the Specific Resistance of Contacts to III-V Nitride Compounds", Mat. Res. Soc. Symp. Proc., vol. 395, 1996, pp. 849-854.
Kong et al., "AlGaN/GaN/AlGaN Double-Heterojunction Blue LEDs on 6H-SiC Substrates", Mat. Res. Soc. Symp. Proc., vol. 395, 1996, pp. 903-907.
Schetzina, "Growth and Properties of III-V Nitride Films, Quantum Well Structures and Integrated Heterostructure Devices", Mat. Res. Soc. Symp. Proc., vol. 395, 1996, pp. 123-134.
Meier Stephen
North Carolina State University
LandOfFree
Integrated heterostructures of Group III-V nitride semiconductor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated heterostructures of Group III-V nitride semiconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated heterostructures of Group III-V nitride semiconductor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1008945