Integrated glass ceramic spacecraft

Aeronautics and astronautics – Spacecraft – Spacecraft formation – orbit – or interplanetary path

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C501S001000, C501S037000

Reexamination Certificate

active

06830221

ABSTRACT:

REFERENCE TO RELATED APPLICATION
The present application is related to applicant's copending application entitled Glass Ceramic Systems Ser. No.: 10/741,795, filed Dec. 19, 2003, by the same inventors.
FIELD OF THE INVENTION
The invention relates to the fields of industrial art for making glass and ceramic components, tool and die arts for making molded glass and ceramic components, photostructurable arts for laser milling glass and ceramic components, semiconductor arts for fabricating semiconductors and hybrids, and for depositing conductor traces in an electrical communications grid, microelectromechanical arts for making active and passive MEMS devices, wafer flip and bond art for encapsulating electrical devices, MEMS devices, and optical devices, electrical arts for making batteries, power converters, and RF antennae, electronic arts for making processors, electronic components, optoelectronic interfaces, RF transmitters, RF receivers, and despreading correlators, electromechanical arts for making active gyros, and accelerometers, photonic arts for making optical transceivers, optical detectors, mirrors, splitters, reflectors, polarizers, lenses, and optical fibers for communicating and processing optical signals for use in an optical communications grid, all for use and incorporation into a new field of integrated glass ceramic systems having structural elements formed from molded and patterned glass ceramic materials with internally communicated optical and electrical signals while also having encapsulated electronic, photonic, electrical and microelectromechanical system devices intercommunicating through an internal electrooptical communications grid.
BACKGROUND OF THE INVENTION
There are a vast variety of conventional fabrication methods and devices used from a variety of operational systems. As examples, industrial arts have been used for making glass and ceramic components. The tool and die arts have been used for making molded glass and ceramic components. Molded components include poured, injected and stamped glass ceramic components. The semiconductor arts have been used for fabricating semiconductors, chips, and hybrids. During fabrication, depositing conductor traces and with feedthroughs are used to form an electrical communications grid about the semiconductor components. The microelectromechanical systems (MEMS) arts have been used for making active and passive MEMS sensors and actuators, among others devices. The wafer flip and bond arts have been used for electrically connecting and encapsulating electrical devices, MEMS devices, and optical devices within flip-bonded semiconductor and ceramic substrates. The electrical arts have been used for making batteries, power converters, communications processors, and RF antennae, among others. The electronic arts have been used for making power supplies, electronic devices, optoelectronic devices, RF transmitters, RF receivers, and despreading correlators, among others. The electromechanical arts have been used for making active gyros, and accelerometers, among others. The photonic arts for have been used for making optical transceivers, optical detectors, mirrors, splitters, reflectors, polarizers, lens, and optical fibers, among others, for communicating and processing optical signals for use in an optical communications grid. While there is a vast array of technologies available, system integration of various technology is limited due to operational compatibility and fabrication feasibility.
One example of an intertechnology integrated system is a conventional satellite. A satellite can be made of silicon for exploiting strength, high thermal conductivity, infrared transparency, and radiation-shielding properties of silicon along with established silicon microelectronics and microelectromechanical systems fabrication techniques to create satellites composed of silicon components. Silicon is an excellent choice as the main material for a spacecraft, but bulk mechanical, thermal, and optical properties cannot be significantly modified.
Glass materials have an amorphous state that is a noncrystalline state. Ceramic materials have a crystalline state. Ceramic materials are tougher than glass but also tend to be more brittle than the glass, and hence not generally suitable as a support structure in high tensile stress application. Glass is weaker than ceramic, and susceptible to breakage during wide temperature operating range variations, but glass has superior optical transmission characteristics and can be brittle. Ceramics can withstand higher temperatures than the glass, but have poor optical transmission characteristics. Glass and ceramic materials differ in material properties, such optical transmission, electrical conductivity, thermal conductivity, and chemical resistance, offering operational incompatibility, and unsuitability for common use in a given application. Glass materials have been annealed to reduce internal stresses and prevent cracking and breakage during cooling, especially for thick components. This is typically accomplished by heating glass to its softening temperature, followed by a slow cool-down process. Annealing decreases the overall strength of glass, but also makes the glass less brittle. Ceramic materials can also be annealed, but it is usually used to improve strength. Ceramic annealing changes crystal grain size. Glass materials have been tempered to increase internal compressive stresses for increasing the strength of the glass to external tensile loads. This is typically accomplished by heating glass to its softening temperature, followed by a rapid cool-down process. Ceramic materials are not tempered.
Glass ceramic materials have portions in the amorphous state and portions in the crystalline state. Glass ceramic materials incorporate an in-situ nucleation process that results in the crystallization of the amorphous glass phase. This conversion process is nominally called devitrification. Typically, glass stock is produced with additional ingredients that upon heating above a specified temperature, induces ceramization of the material. The bake method provides a material that is controllably devitrified, that is, a controlled in situ precipitation of crystalline material within an amorphous glass body. Beyond the known advantages of glass and ceramics, glass ceramic materials offer cost-effective manufacturing of shaped ceramic parts. The initial material in the glass phase is melted and molded into the desired shape and then converted to the crystalline ceramic state. Because the resulting material is not 100% crystalline, but a composite of amorphous and crystalline phases, it is less brittle than true crystalline ceramics. Glass ceramic materials are used in a wide range of applications from specialized optics to consumer cookware. Some well-known trade names are Macor which is machinable ceramic Corning Corporation, Dicor which is a biomaterial from Corning Corporation, Zerodur which is an expansion material from Schott Corporation, ML-05 which is a magnetic material from Nippon Electric Glass Company, and Pyroceram which is a cookware material from Corning Ware.
A special category of sensitized glass ceramic material is the photostructruable glass ceramic materials, also called photositalls and photocerams. Photostructruable glass ceramic materials differ from most glass ceramic materials in that photosensitive agents are incorporated into the raw material. Upon photo excitation, these agents initiate a reaction that can lead to nucleation and crystallization, that is, ceramization, of the glass during a controlled bake process. One set of bake cycles leads to the formation of a metastable crystalline state which is soluble in hydrofluoric acid (HF). Another set of bake cycles leads to the formation of a stable crystalline state that is resistant to etching by both acids and bases. Photostructurable glass ceramic materials can be photolithographically patterned, and upon baking, only those patterned areas would be converted to one of the ceramic states. The exposure

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated glass ceramic spacecraft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated glass ceramic spacecraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated glass ceramic spacecraft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3337003

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.