Integrated flight information and control system

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S014000, C701S004000, C701S200000

Reexamination Certificate

active

06389333

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The invention relates to aircraft instrumentation and control and, more particularly, comprises a method and apparatus for improved attitude determination and navigation, and an improved integrated flight information and control system in connection therewith.
B. Prior Art
Safe control and navigation of an aircraft requires a continuous stream of relatively accurate information concerning the dynamics of the aircraft as it moves along its flight path from origin to destination. Information such as the airplane's altitude, velocity, heading, attitude (including at least pitch and roll information), among other data, are important for piloting the aircraft. Extensive, highly accurate, and correspondingly expensive, instrumentation has been developed for commercial and military aircraft to fill the required need. Such instrumentation is far too expensive for smaller, private aircraft, and the latter therefore must make do with simpler, cruder navigation systems providing more limited, and commonly less accurate, navigation data.
In larger commercial and military aircraft, inertial navigation systems have commonly been the instrumentation of choice. Such systems rely on the ability of gyroscopes to maintain their orientation in space once initialized, and to provide relatively sensitive indications of accelerations tending to disturb that orientation. These systems typically have significant mass and bulk, are expensive to acquire, and require continued, frequently costly, calibration, maintenance and repair to ensure continued acceptable performance. Their use has therefore been confined largely to larger commercial and military aircraft.
The advent of satellite positioning systems, such as the Global Positioning System (GPS) established and maintained by the United States, or the GLONASS system established and maintained by Russia, offers the possibility of significantly reducing the mass and bulk of many present navigation systems, and possibly their cost as well. Navigation systems using these facilities rely on the measurement of phase differences in received radio signals from a number of satellites in order to determine the position in space of the receiver, and therefore the platform on which the receiver is carried, with respect to the satellites. Because the position and velocity of the satellites relative to earth at any given time is known, the position and velocity of the receiver with respect to an arbitrary earth-based reference system can be determined from measurements with respect to the satellites.
In addition to navigation functions, such systems can also be used to determine the attitude of the vehicle in which the system is mounted. Numerous attitude determination systems based on GPS measurements have been proposed and such systems take many forms. For example, U.S. Pat. No. 5,548,293 issued Aug. 20, 1996 to Clark E. Cohen and entitled “System and Method for Generating Attitude Determinations Using GPS” proposes the use of a multiplicity of antennas on a vehicle whose orientation with respect to a reference frame is to be determined. The antennas provide a multiplicity of baselines from which the orientation may be found. Multiple baselines are used in order to resolve the position ambiguity inherent in measurements from antennas typically separated by many meters resulting from the short wavelengths used in GPS signaling (on the order of 0.2 meters). The use of a number of antennas, of course, increases the cost of the system, as well as the cost of installation, and inhibits the application of such a system to small aircraft in particular. Further, because of the very short wavelength, significant errors are introduced in the measurement whenever the distance between the antennas changes, as it is susceptible to do in response to stresses imposed on the aircraft during flight.
Some systems, such as that described in U.S. Pat. No. 5,534,875 issued Jul. 9, 1996 to Debra Diefes et al., entitled “Attitude Determining System for Use with Global Positioning System”, utilize a single GPS receiver and antenna on board the vehicle, but use standard inclinometers to determine the pitch and roll of the vehicle platform. Such hybrid systems fail to make use of the capabilities of GPS for attitude determination.
Still other systems, such as that described in U.S. Pat. No. 5,451,963, issued Sep. 19, 1995 to Thomas A. Lempicke, entitled “Method and Apparatus for Determining Aircraft Bank Angle Based on Satellite Navigational Signals”, utilize a single on-board GPS system that determines certain attitude information, such as bank angle, only under conditions of level flight, thus precluding effective use of the system in arbitrary maneuvers such as climbing or descending turns in which accurate attitude information is often most essential, particularly in connection with takeoff and landing. Further, the system posits a mode of operation (determining bank angle as inversely proportional to aircraft speed) which is not explained and not achievable by anything described in the patent.
Still another GPS-based system is described in U.S. Pat. No. 5,406,489, issued Apr. 11, 1995 to LaMar K. Timothy et al., entitled “Instrument for Measuring an Aircraft's Roll, Pitch and Heading by Matching Position Changes Along Two Sets of Axes”. This patent uses both a GPS receiver and a multiplicity of accelerometers oriented along the three aircraft body axes, respectively, to determine attitude and other navigation information. Again, the hybrid nature of the system increases its cost, complexity, and maintenance requirements.
SUMMARY OF THE INVENTION
A. Objects of the Invention
Accordingly, it is an object of the present invention to provide an inexpensive but relatively accurate and reliable attitude determination method and apparatus for aircraft navigation.
Another object of the invention is to provide a simple, low-cost navigation system for determining attitude (roll, pitch) information for small aircraft.
Further, it is an object of the invention to provide an inexpensive attitude determination system that is useful as a backup for more elaborate navigation instrumentation systems.
Still a further object of the invention is to provide a simple, relatively inexpensive attitude indicator.
Yet another object of the invention is to provide an improved, economical integrated flight information and control system for control and navigation of aircraft.
B. Brief Summary of the Invention
In accordance with the present invention, we provide a method and apparatus for readily and inexpensively determining and displaying flight path angle and roll angle of an aircraft despite its engagement in arbitrary, but balanced, maneuvers such as ascent or descent accompanied by banked turns, conditions which present problems for many navigation systems. Because of its simplicity, and its reliance on a single source of measurement data for the requisite input information, the system is extremely simple and inexpensive to construct, install, and maintain. It is particularly suited for installation and use in small aircraft, where the cost of more elaborate and more expensive systems considered essential for navigation on larger aircraft effectively preclude their acquisition and use. Further, the system is sufficiently accurate and reliable to be used as a supplemental system on larger aircraft for use in integrity checking, as well as for backup in the event of failure of the primary system. The present invention obviates the use of a multiplicity of receivers or antennas or supplemental orientation indicators, and is useful throughout the entire range of flight dynamics commonly encountered in air navigation.
In particular, in accordance with the preferred embodiment of the invention, we determine the flight path angle &ggr; and roll angle &phgr;
s
of an aircraft and display these as parameters to the pilot as a principal measure of the aircraft attitude at a given moment. For convenience of reference, the stability axis roll angle &phgr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated flight information and control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated flight information and control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated flight information and control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2831162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.