Communications: electrical – Aircraft alarm or indicating systems
Reexamination Certificate
2001-08-20
2004-11-02
Lieu, Julie (Department: 2632)
Communications: electrical
Aircraft alarm or indicating systems
C340S971000, C340S973000, C340S995190, C701S003000, C701S014000
Reexamination Certificate
active
06812858
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to displays for aircrafts, and more particularly to an integrated display for displaying information from a plurality of sources, as well as indicating the relationship between selected information.
BACKGROUND OF THE INVENTION
Navigation information provided to pilots in early commercial airplanes was typically in the form of bearing and distance information displayed on an electromechanical flight instrument. The source of the information usually was a navigation radio transmitter located on the ground. Onboard navigation radios would receive the signal and process the information for display on the electromechanical flight instrument. This navigation equipment was designed within standard industry tolerances so that navigation accuracy for each type of navigation radio was well known and airspace procedure designers could allocate blocks of airspace based on the expected accuracy of the navigation equipment.
For oceanic travel, or in remote areas not serviced by navigation radio transmitters, such that signals could not be received by onboard navigation radios, inertial reference systems (IRS) were developed to provide reasonably accurate navigation information to pilots. Airspace procedure designers for routes in these areas also relied upon expected industry standards for navigation accuracy of these systems.
Global Navigation Satellite Systems (GNSS), including the Global Positioning System (GPS), were introduced in the 1990's. These systems provided increased navigation accuracy for commercial airplanes compared to both navigation radios and IRS. Modern Flight Management Computer Systems (FMCS) were developed with the capability to generate an integrated navigation solution using inputs from the navigation radios, IRSs and GNSSs.
A further development was the introduction of additional navigation standards, including the creation of the concepts of Required Navigation Performance (RNP) and Actual Navigation Performance. With these concepts, airspace procedure designers could create procedures with the flexibility of different levels of airplane navigation accuracy or Actual Navigation Performance, and assign each procedure an RNP with which the airplane must comply in order to legally fly the procedure. FMCSs were developed with the capability of predicting a circular error of probability within which the airplane was expected to be almost all of the time (e.g., 95%), which probability estimate is the Actual Navigation Performance of the airplane.
The capabilities of the FMCSs were further expanded to allow manual entry of an RNP (e.g., by a pilot). The FMCS continuously monitors the relationship of Actual Navigation Performance to the RNP and provides a warning indication (e.g., an alert message) to the pilot if an exceedance occurs, for example, if the Actual Navigation Performance exceeds the predetermined RNP limit.
The concepts of Actual Navigation Performance and RNP have increased design flexibility, but are difficult to visualize by a pilot. Aircraft displays configured for providing Actual Navigation Performance and RNP information fail to provide an overall picture of the navigation system. For example, current FMCSs only provide a digital display of Actual Navigation Performance and RNP. Additionally the status, number and type of systems that contribute information to the FMCS, which ultimately result in the navigation solution, and the associated Actual Navigation Performance, are not easily discernable in current commercial airplanes. Further, the status and number of operating components that affect the navigation performance are displayed in a variety of locations forcing the pilot to visualize (e.g., deduce from several locations) the overall status of the navigation system in order to determine this information. Also, some navigation components can be turned off to prevent them from contributing to the navigation solution of the FMCS (e.g., GPS and/or VOR), which adds a further layer of complexity for a pilot trying to determine specific navigation information.
For example, on the Boeing® 747®, 757®, 767®, and 777® airplanes, information about navigation performance and system status is displayed on several pages of a Control Display Unit (CDU), including POS REF pages and REF NAV DATA pages. On the Boeing® 737® airplane, the status of some of the navigation system components is captured on two display formats called the NAV STATUS and NAV OPTIONS page on the FMCS CDU. On these displays, the pilot can determine information regarding specific navigation components. However, the information is only displayed in digital format and a pilot must still create a mental model of the entire navigation system picture. Further, a pilot may still have to determine additional information from other display screens. Also, the relationship between different information, for example, Actual Navigation Performance and RNP is displayed in digital format. Thus, a pilot must again determine the total navigation system “picture” of the relationship between the information provided by specific components because there is no single graphical display for providing this information.
In addition to developments in aircraft navigation systems, communication systems were also developed to facilitate and improve aircraft flight. Early communication systems were supported exclusively by Very High Frequency (VHF) radios configured for data transmission. Improvements and advances in communication technology allowed for satellite communications (SATCOM) systems and High Frequency (HF) radios to support data communications in flight. The amount and type of information that is now exchanged between a commercial airplane and facilities on the ground has grown to a point that the pilot may have to search several locations in order to determine where and how data is being communicated to and from the airplane. This may include determining the type of communications systems (e.g., SATCOM, VHF or HF) that are enabled, the frequencies on which these systems are operating and the status of alternate communications paths in the event of a lost connection or component failure.
As a result of the increased flow of information to and from commercial aircrafts, the use of more complex systems in commercial airplanes, such as Data Link, is becoming increasingly widespread. Airline companies now routinely transmit flight planning, weather, airplane performance and administrative information electronically to airplanes around the world. This information, in combination with navigation information from the GNSSs, provide more reliable data for use in maintaining a flight course within a predetermined flight plan and/or to more easily change the flight course based upon external conditions (e.g., unexpected weather changes). Further, a variety of onboard communications systems have been developed to provide connectivity with airline ground facilities through Data Link service providers. Thus, the use of electronic information for air traffic control (i.e., communication and navigation control) of airplanes is growing.
For example, on airplanes prior to the Boeing® 777®, data communications tasks were distributed among a number of onboard systems. On the Boeing® 777®, the data communications functions were consolidated and a “manager” function was provided that allows the pilot to evaluate the system status and reconfigure the system if desired. However, the total data communications system “picture” must still be determined (i.e., visualized) by the pilot because there is no single overall display (e.g., graphical display) that shows the status of the radio equipment (e.g., SATCOM, VHF, and HF), including the active components receiving information. Further, no depiction or representation of which types of data communications are currently linked with an external system is provided.
Thus, although the amount of navigation and communication information available for use during flight has increased, thereby facilitating aircraft control,
Harness & Dickey & Pierce P.L.C.
Lieu Julie
The Boeing Company
LandOfFree
Integrated display for aircrafts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated display for aircrafts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated display for aircrafts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3345747