Furnaces – With fuel treatment means – Means for liberating gas from solid fuel
Reexamination Certificate
1999-11-23
2001-02-06
Ferensic, Denise L. (Department: 3749)
Furnaces
With fuel treatment means
Means for liberating gas from solid fuel
C110S185000, C110S219000, C110S224000, C110S342000, C110S1010CD, C201S013000, C201S025000, C202S122000
Reexamination Certificate
active
06182584
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a self-sustaining, continuously controlled, pyrolytic process and apparatus for the conversion of organic, non-metallic waste materials into higher quality and quantity of combustible gases, as useful energy sources. The invention includes an integrated control process and system that ensures continuous automated processes that ensure consistent energy recovery with little intervention.
2. Description of Related Art
The rapid rate of depletion of fossil fuels has made the search for new energy sources increasingly important. One of the more promising sources of new energy is green energy, e.g. biomass and other waste products which are presently being destroyed or discarded. Available space for landfills, conventionally used for disposal of these wastes, is diminishing. In addition, landfills have other shortcomings, e.g. leaching of pollutants into the ground and water tables, odors, extended time needed for refuse decomposition, and settling of the landfill site.
Incineration has been widely used as an alternative to landfill waste disposal. This is generally carried out in a combustion chamber to which air is added to accomplish combustion. Because solid waste materials vary widely in composition and moisture content, the combustion reaction is difficult to control and maintain. Incomplete combustion of the waste is common with the associated discharge of large quantities of smoke and pollution into the atmosphere. Though open air or forced air incineration of solid waste reduces waste volume, the inherent air pollution resulting is environmentally unacceptable. Incineration, even if not polluting, generates large amounts of CO
2
which is undesirable.
As an environmental improvement over incineration, the pyrolytic process employs high temperatures in an atmosphere substantially free of oxygen (such as a practical vacuum) to convert organic waste to other states of matter such as a gas or vapor with an ash like residue.
Numerous pyrolysis and waste gasification systems have been proposed, however, a practical efficient system has not achieved significant commercial use. Pyrolysis has been affected in part by heat transfer problems attendant to the large variance in composition and moisture content of the waste. As to these variances in content of urban waste, statistical samples have been analyzed from diverse geographical areas beginning in the 1980's in an effort to determine its chemical and generic composition. The analysis disclosed in the table below is still considered to be valid today and generally comprises the following:
Analysis
Chemical-Physical
Analysis/Values in
Percentages, except
North-
North-
as indicated
west
east
Central
South
Islands
Italy
Water
40%
41
43
49
50
44
Combustible
36
35
33
29
30
33
Materials
Non-Combustible
24
24
24
22
20
23
Materials
Calorific Power,
1510
1410
1330
1020
1128
1300
Keal/kg
Analysis/
Percentages
Sub-Filter or
18
16
18
21
13
18
Cup/Drum Screen
Cellulosic Matter
25
23
23
16
20
22
Plastic Matter
9
7
6
7
8
7
Metals
3
3
3
2
2
3
Inert Materials
8
9
9
5
8
7
Organic Matter;
37
42
41
49
49
46
Various
Because municipal waste contains significant amounts of plastic that melt before burning, such waste tends to quench the combustion and can eventually stop the pyrolytic gasification process entirely. Large amounts of smoke and other pollutants generated by this inability to adequately control the combustion of waste material which are emitted into the atmosphere have compromised the commercial utility of the gasification process.
Incomplete or marginal pyrolysis is unreliable in continuous operation. Even employing complicated and expensive procedures for capturing the smoke and other pollutants, inadvertent emissions of large amounts of these pollutants remain common.
For example, to achieve relatively steady state operation when gasifying common municipal waste, temperatures for pyrolysis must be used which approach the temperature at which slagging of inorganic material occurs within the pyrolysis chamber. The temperature in the pyrolysis chamber often rises above the slagging temperature due to the difficulty in maintaining the temperature within the pyrolysis chamber. The inorganic components of the waste melt form a tenaciously adhering slag coating on all surfaces exposed to the waste. Variances in content and moisture of municipal waste make controlling the pyrolysis temperature below the slagging point extremely difficult.
Prior devices and processes have not adequately addressed these problems which must be dealt with on a continuously changing basis. Accordingly, it would be a significant advancement in the art to provide a method and apparatus which is self-sustaining, and simultaneously controls sorting, drying, distillation, cracking, purification, and pollution while significantly reducing waste and recovering substantial amounts of energy from the waste. Such process and apparatus for the conversion of waste materials are disclosed herein.
BRIEF SUMMARY OF THE INVENTION
A system and method providing a self sustaining continuously, automatically controlled pyrolytic process for the conversion of organic, non-metallic waste materials into energy providing combustible gases used to sustain the pyrolytic process in order to reduce municipal waste and increase the efficiency of municipal waste elimination.
The heart of the system is a destructive distillation unit which subjects pre-sorted organic waste to pyrolytic action in a substantial oxygen free chamber in which temperatures generate above 1,000° Fahrenheit. The purpose of this chamber is to convert organic waste materials into gaseous reusable fuel and a fine char residue. Waste material to be processed is continuously fed into the unit and is controlled by a master control unit which provides for complete control of the entire system, keeping the system self-sustaining and automated. Prior to the waste materials being entered into the destructive distillation unit, the materials are subjected to a dryer to remove 90% of the moisture, resulting in waste material that has less than 10% moisture. This is to insure a complete and thorough pyrolytic conversion within the destructive distillation unit to prevent variations and fluctuations in the gasification process itself.
In order to properly provide the most efficient organic waste materials to the dryer and to the pyrolytic chamber, it is very important to provide an automated feed system that separates out metallic objects which are not suitable with this process, and plastic products which are also not particularly suitable, which is done upstream of the dryer. It is also desirable to provide a shredder for the organic waste material prior to its entry into the dryer to get a more thorough drying. As the waste material exits the shredder, the shredded waste is deposited on a weight belt conveyor that is part of the automated process and moved to a belt elevator that transfers the shredded waste material into the dryer in a continuous process.
Gas (a fuel source) is generated in the destructive distillation unit or pyrolytic chamber from the biomass waste and is removed from the chamber, recovered, filtered, scrubbed and used as fuel to generate heat to self-sustain the action in the destructive distillation unit. The gas fuel may be transferred and stored in a main gas storage tank. It can also be used to generate steam for a turbine generator for electricity as a by-product of excessive energy.
Of extreme importance in the overall system, is that there is a main integrated processor and a series of sensors and control systems that control the rate and flow of the waste material feed at different points, the temperatures within the dryer and the destructive distillation unit, the quality of the gases being generated based on the material fed into the unit and in essence a complete control of the process at the important components to ensure efficient, self-sustaining activity to optimize
Environmental Solutions & Technology, Inc.
Ferensic Denise L.
Malin, Haley & DiMaagio, P.A.
Rinehart Ken B.
LandOfFree
Integrated control and destructive distillation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated control and destructive distillation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated control and destructive distillation of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2606989