Oscillators – Plural oscillators – Parallel connected
Patent
1997-12-11
2000-08-15
Grimm, Siegfried H.
Oscillators
Plural oscillators
Parallel connected
327294, 327565, 331 45, 331 57, 331 74, H03B 502, H03B 2700, H03K 303
Patent
active
061042536
ABSTRACT:
Integrated circuits having cooperative ring oscillator clock circuits therein include a plurality of synchronous and asynchronous active devices on the substrate and a plurality of "cooperative" ring oscillators (CRO) electrically coupled in parallel at respective clock nodes, interspersed on the substrate as a mesh, for example. The ring oscillators, which may have a predetermined number of stages but possibly different size in terms of clock driving capability, are preferably interspersed among the synchronous active devices on the surface of the substrate to provide a "local" clock signal which is constrained in terms of skew and jitter by the presence of the other parallel-connected ring oscillators at other locations on the substrate. Multiple replications of a ring-oscillator containing three serially connected inverters may result in the formation of a two-dimensional hexagonal network of clock nodes of different phases (e.g., .phi..sub.1, .phi..sub.2 and .phi..sub.3). Connection of the inverters as a hexagonal network also causes "aggregation" because the arrangement of the inverters in the net places the inverters in parallel. Whenever inverters are connected in parallel, an "aggregated" inverter is formed having an effective width equal to the arithmetic sum of the widths of the all the individual inverters of the same phase. This "aggregation" compensates for process variations because the "faster" and "slower" inverters tend to cancel each other out during signal transitions. The benefits of aggregation are also independent of the size of the IC so efficient scaling can be readily achieved. Ring oscillators of larger size (e.g., widths) can also be placed in close proximity to those portions of the circuit which have high load synchronous active devices therein, to inhibit local variations in skew and jitter.
REFERENCES:
patent: 5163068 (1992-11-01), El-Amawy
patent: 5475344 (1995-12-01), Maneatis et al.
Friedman, Clocking Arbitrarily Large Computing Structures Under Constant Skew Bound, Clock Distribution Networks In VLSI Circuits And Systems, A Selected Reprint Volume IEEE Circuits and Systems Society, IEEE Press, 1995, ISBN 0-7803-1058-6, IEEE Order No.: PC4127, pp. 463-477.
Galton et al., Clock Distribution Using Coupled Oscillators, 1996 IEEE International Symposium On Circuits And Systems, vol. 3, ISCAS 96, May 12-15 1996, pp. 217-220.
Montanaro et al., A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor, IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1703-1714.
Lee et al., A Novel High-Speed Ring Oscillator For Multiphase Clock Generation Using Negative Skewed Delay Scheme, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, Feb. 1997, pp. 289-291.
Christiansen, An Integrated High Resolution CMOS Timing Generator Based On An Array Of Delay Locked Loops, IEEE Journal of Solid-State Circuits, vol. 31, No. 7, Jul. 1996, pp. 952-957.
Gaddis et al., A 64-b Quad-Issue CMOS RISC Microprocessor, IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1697-1702.
Dobberpuhl et al., A 200-MHz 64-b Dual-Issue CMOS Microprocessor, IEEE Journal of Solid-State Circuits, vol. 27, No. 11, Nov. 1992, pp. 1555-1564.
Gronowski, et al., A 433-MHz 64-b Quad-Issue RISC Microprocessor, IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1687-1696.
Bowhill et al., Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU, Digital Technical Journal, vol. 7, No. 1, 1995, pp. 100-114.
Bilbro Griff L.
Clements S Mark
Hall Lester Crossman
Liu Wentai
Grimm Siegfried H.
North Carolina State University
LandOfFree
Integrated circuits having cooperative ring oscillator clock cir does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated circuits having cooperative ring oscillator clock cir, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuits having cooperative ring oscillator clock cir will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2011089