Integrated circuit (IC) plating deposition system and method

Abrading – Abrading process – Glass or stone abrading

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S036000, C451S057000, C451S060000, C451S065000, C451S288000, C451S290000

Reexamination Certificate

active

06341998

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of integrated circuit (IC) manufacturing. More particularly the present invention relates to system and method of copper plating deposition on an IC wafer.
BACKGROUND OF THE INVENTION
Electronic systems and circuits have made a significant contribution towards the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous electronic technologies such as digital computers, calculators, audio devices, video equipment, and telephone systems include processors that have facilitated increased productivity and reduced costs in analyzing and communicating data, ideas and trends in most areas of business, science, education and entertainment. Frequently, electronic systems designed to provide these results include integrated circuits (ICs) on chip wafers with metal components (e.g., copper interconnections between components of the IC). Often these metal components are critical to the functionality of an IC and it is important for them to be manufactured in an efficient and effective manner. Traditional methods of depositing metal in a wafer often include multistep processes that expend significant time performing sequential steps and require extensive resources to be expended focusing attention on relatively delicate operations that are subject to significant defect rates.
The starting material for typical ICs is very high purity silicon. The pure silicon material is grown as a single crystal that takes the shape of a solid cylinder. This crystal is then sawed (like a loaf of bread) to produce wafers typically 10 to 30 cm in diameter and 250 microns thick. Electronic components are then constructed on the wafer by adding multiple layers to the wafer through a process of lithography (e.g., photolithography, X-ray lithography, etc.). Lithographic processes form electronic components in a wafer layer by developing regions with defined electrical characteristics. Complex ICs can often have many different built up layers, with each layer being stacked on top of the previous layer and comprising multiple components with a variety of interconnections.
Most typical photolithographic integrated circuit chip fabrication processes include a deposition phase in which material of differing electrical characteristics is deposited in a space created in a diffusion material. Deposition phases of a lithographic process are often utilized to create components (e.g., resistors, diodes, transistors, etc.) and electrical interconnections between the components. Current technology electrical interconnections often include lines and plugs that are deposited in dielectric layers of the wafer. In the past, lines typically comprised aluminum (or an aluminum alloy) and plugs included tungsten. However, as component sizes become smaller and more layers of metalization are fabricated, interconnections comprising copper are becoming more prevalent. Copper interconnections typically provide several advantages over other materials including lower electrical resistivity and better electromigration resistance.
Usually, a copper damascene process is utilized to deposit copper on a wafer since copper etching is essentially not a viable option. In most damascene processes a deposition material is applied to a substantial portion of wafer surface to be sure that the desired spaces or locations are filled. However, applying the deposition material to most of the wafer surface results in the deposition material effectively creating an unwanted layer that has to be removed in a subsequent step (e.g., removed by a chemical mechanical polishing step). For example, in order to ensure complete filling of a trench, usually excess copper is deposited on most of a wafer surface. However, the excess copper usually interferes with the performance and electrical characteristics of the IC. Excess copper often creates a conductive path past subsequent dielectric material layers designed to provide electrical insulation.
A cross section of a typical conductive line (e.g., copper metalization) produced in the lithographic manufacturing of very large scale integrated (VLSI) device
100
is shown in FIG.
1
. After a trench is formed by an lithographic etching process, a thin layer of barrier material
120
(e.g., Ta, TaN, etc.) is deposited to prevent the inter-diffusion between copper and the silicon substrate
130
. Then a bulk layer of copper
110
is applied to a substantial area of a wafer surface. The copper deposited between the elevation
150
and elevation
170
is excess copper. Typically, the excess copper is removed in a chemical mechanical process (CMP) to prevent unintentional formation an inappropriate conductive path between devices included in the IC. For example, not removing the excess copper usually results in a layer of conductive material that conducts electricity to inappropriate areas of the integrated circuit (e.g., a short circuit between transistors). After the excess copper and the barrier layer are removed a dielectric layer is applied on top of the wafer surface. Thus, electrically conductive copper paths are confined to trenches forming lines and plugs purposely created between devices.
Removing excess copper also is important to achieving a planarized wafer surface. A level or planarized wafer surface assists lithographic processes to achieve accurate reproduction of very fine surface geometries accurately and integration of more components (resistors, diodes, transistors, and the like) on underlying chip or IC. The primary manner of incorporating more components in a chip is to make each component smaller. Typically, smaller electronic components are built on a chip by increasing optical resolution of a photolithographic process. However, this results in narrowing the depth of focus which is limited by ranges at which a lens remains effective. Depth of focus problems are exacerbated by bumpy topographies on the wafer that usually result during the lithography process of adding layers of material with varying geometric sizes. Thus, in order to focus desirable mask images defining sub-micron geometries onto each of the intermediate photosensitive layers in a manner that achieves the greatest number of components on a single wafer, a precisely flat surface is desired.
Chemical-mechanical polishing (CMP) is the most prevalent method of removing excess conductive copper and obtaining full planarization of a wafer layer. CMP processes usually involve removing excess conductive material by using an abrasive and chemical contact between the wafer and a moving polishing pad covered with a polishing slurry. While typical chemical mechanical polishing processes remove excess copper, they also usually entail detrimental side affects. Copper CMP processes are relatively delicate and require a significant amount of attention. For example, CMP of copper is usually more difficult than tungsten and oxide. Copper is usually prone to both chemical and mechanical attacks. More specifically, copper film typically deposited on a wafer is easily scratched during CMP. As abrasive slurry is consumed during the polishing process the abrasive particles usually scratch the copper.
Utilizing CMP to remove excess copper typically includes time consuming and corrosive multistep operations. Polishing copper by CMP often requires expensive multiple slurries and polishing steps, primarily because the removal rate of copper and barrier layers are significantly different. Most CMP processes are wet processes that require significant time to dry after each CMP step and utilizing “wet” fluids significantly adds to the probability of corrosion problems. In addition to difficulties in CMP itself, post-CMP cleaning to remove defects and contaminants from the copper film and surrounding dielectric film is also challenging. Most post CMP cleaning processes include water that is very corrosive to copper lines or plugs. Cleaning chemicals and cleaning tools have to be well designed so that the film is not damaged (e.g., roughen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit (IC) plating deposition system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit (IC) plating deposition system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit (IC) plating deposition system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2818238

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.