Integrated circuit cooling apparatus

Refrigeration – Structural installation – With electrical component cooling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S701000

Reexamination Certificate

active

06543246

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to integrated circuit devices such as the central processing units (CPUs) of computers. More particularly, the invention relates to the cooling of such integrated circuits for enhanced electronic performance.
It is well known in the electronics industry that cooling integrated circuit devices to below ambient temperature will substantially improve the efficiency and speed at which such devices can operate. Such cooling is particularly beneficial in microprocessors that form the CPU of modern day computers. For example, it has been found that the performance of a desktop computer can be significantly improved by cooling the CPU to temperatures of −40° C. or below.
In the past, various techniques have been proposed for cooling CPUs and other integrated circuit devices to temperatures below ambient. For example, KryoTech, Inc., the assignee of the present invention, has previously developed a refrigeration system for cooling a CPU in a desktop computer. This refrigeration system operated by a circulating refrigerant fluid to a thermal head engaging the CPU.
The thermal head defined a flow channel through which the refrigerant fluid would pass as it circulated around the closed loop of the refrigeration system. Due to its design, the thermal head functioned as an evaporator where the refrigerant fluid was converted from liquid to gaseous form. In accordance with known thermodynamic principles, thermal energy was thus removed from the location of the CPU. The gaseous refrigerant, drawn from the evaporator by a compressor, was then fed back to a condenser where the thermal energy was removed.
As one skilled in the art will appreciate, the use of a refrigeration system in conjunction with electronic equipment raises a variety of issues. For example, undesirable condensation can develop on the computer's motherboard unless appropriate preventative measures are taken. To provide a secure seal around the thermal head, the housing in which the thermal head is located has been permanently affixed to the motherboard itself. Such an arrangement, however, makes removal of the motherboard difficult after the refrigeration system has been installed in the computer. This permanent attachment may also require opening of the refrigeration system in order to repair or replace the motherboard.
SUMMARY OF THE INVENTION
According to one aspect, the present invention provides an apparatus for cooling an electronic device. The apparatus comprises a mounting structure having a receiving aperture in alignment with the electronic device. A thermal head is adapted to be inserted into and guided by the receiving aperture such that a cooled surface of the thermal head will be in thermal contact with the electronic device. The thermal head defines a flow channel for passage of a refrigerant fluid so as to cause cooling at the cooled surface. A clamping arrangement is attached to the mounting structure to maintain the thermal head in operative position. The apparatus further includes a refrigeration system in fluid communication with the flow channel of the thermal head to supply refrigerant fluid thereto.
In some exemplary embodiments, the mounting structure comprises a thermal housing having an interior in which the electronic device is located. The thermal housing serves to isolate the interior thereof from an ambient environment. Often, it will be desirable to form the thermal housing of thermally conductive metal, such as aluminum. This permits, for example, the provision of a heater element for heating an outer surface of the thermal housing so as to prevent condensation from forming thereon. Advantageously, the mounting structure may be fixed to a circuit board on which the electronic device is mounted.
Embodiments are contemplated in which the thermal head is axially movable in the receiving aperture of the mounting structure. In such embodiments, the clamping arrangement may include a spring element to urge the thermal head into engagement with the electronic device. The thermal head may further include a peripheral seal engaging an inner wall of the receiving aperture. In this regard, the receiving aperture and the thermal head may each advantageously have a generally cylindrical configuration.
In some exemplary embodiments, the thermal head will be removably secured by the clamping arrangement with respect to the mounting structure. The clamping arrangement may include a clamping flange movable with respect to the thermal head. The clamping flange in such embodiments may being fixed with respect to the mounting structure when attached thereto. Often, it will be desirable to further equip the clamping arrangement with a clamping collar movable with respect to the clamping flange and the thermal head. A spring element, located between the clamping collar and the thermal head, may also be provided to urge the thermal head into engagement with the electronic device.
Often, it will be desirable to make the inlet tube and outlet tubes through which refrigerant fluid flows to and from the thermal head sufficiently flexible to provide mechanical isolation to the thermal head. For example, the outlet tube may be a corrugated metal tube with the inlet tube being a capillary tube. In some exemplary embodiments, the flow channel of the thermal head has a configuration generally characterized by a plurality of arcuate and concentric passage segments.
Other aspects of the present invention are provided by a thermal housing for attachment to a planar circuit board having thereon at least one electronic device to be cooled. The thermal housing comprises a removable first housing member located on a first side of the circuit board. The first housing member defines an interior in which the electronic device is located. A removable second housing member is located on a second side of the circuit board opposite to the first housing member such that the circuit board will be sandwiched therebetween. At least the first housing member is formed of a thermally conductive material. Furthermore, a first heater element is associated with the first housing member to heat an outer surface thereof so as to prevent condensation from forming thereon. Preferably, the first housing member in such embodiments may define a first groove on its outer surface in which the first heater element is located.
Often, it will be desirable to also construct the second housing member of a thermally conductive material. In such embodiments, a second heater element may be associated with the second housing member. For example, the first and second housing members may each be formed of aluminum. First and second resilient seals may be respectively located between the first and second housing members and the circuit board.
Often, it may be desirable to configure the first housing member so as to have a block portion defining a receiving aperture in which a thermal head of a cooling apparatus is inserted. A wall portion of the first housing member will define a thin wall for engagement with the circuit board. Preferably, the thin wall of the first housing member will be configured to define a path around electronic components mounted to the circuit board. A desiccant material may be located in the interior of the first housing member to absorb moisture located therein.
Still further aspects of the present invention are achieved by an apparatus comprising a planar circuit board having thereon at least one electronic device to be cooled. A thermal housing having a removable first housing member and a removable second housing member is also provided. The first housing member is located on a first side of the circuit board and defines an interior in which the electronic device is located. The first housing member further defines a receiving aperture in alignment with the electronic device. A thermal head of the apparatus is adapted to be inserted into and guided by the receiving aperture such that a cooled surface of the thermal head will be in thermal contact with the electro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit cooling apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit cooling apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit cooling apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.