Integrated circuit comprising an active optical device...

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S013000, C257S021000

Reexamination Certificate

active

07432524

ABSTRACT:
An integrated circuit may include at least one active optical device including a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The integrated circuit may further include a waveguide coupled to the at least one active optical device.

REFERENCES:
patent: 4485128 (1984-11-01), Dalal et al.
patent: 4594603 (1986-06-01), Holonyak, Jr.
patent: 4882609 (1989-11-01), Schubert et al.
patent: 4908678 (1990-03-01), Yamazaki
patent: 4937204 (1990-06-01), Ishibashi et al.
patent: 4969031 (1990-11-01), Kobayashi et al.
patent: 5055887 (1991-10-01), Yamazaki
patent: 5081513 (1992-01-01), Jackson et al.
patent: 5216262 (1993-06-01), Tsu
patent: 5357119 (1994-10-01), Wang et al.
patent: 5422502 (1995-06-01), Kovacic
patent: 5576221 (1996-11-01), Takemura et al.
patent: 5606177 (1997-02-01), Wallace et al.
patent: 5683934 (1997-11-01), Candelaria
patent: 5684817 (1997-11-01), Houdre et al.
patent: 5994164 (1999-11-01), Fonash et al.
patent: 6058127 (2000-05-01), Joannopoulos et al.
patent: 6255150 (2001-07-01), Wilk et al.
patent: 6274007 (2001-08-01), Smirnov et al.
patent: 6281518 (2001-08-01), Sato
patent: 6281532 (2001-08-01), Doyle et al.
patent: 6326311 (2001-12-01), Ueda et al.
patent: 6344271 (2002-02-01), Yadav et al.
patent: 6350993 (2002-02-01), Chu et al.
patent: 6376337 (2002-04-01), Wang et al.
patent: 6436784 (2002-08-01), Allam
patent: 6472685 (2002-10-01), Takagi
patent: 6498359 (2002-12-01), Schmidt et al.
patent: 6501092 (2002-12-01), Nikonov et al.
patent: 6521549 (2003-02-01), Kamath et al.
patent: 6566679 (2003-05-01), Nikonov et al.
patent: 6621097 (2003-09-01), Nikonov et al.
patent: 7023010 (2006-04-01), Wang et al.
patent: 2003/0034529 (2003-02-01), Fitzgerald et al.
patent: 2003/0057416 (2003-03-01), Currie et al.
patent: 2003/0162335 (2003-08-01), Yuki et al.
patent: 2003/0206691 (2003-11-01), Puzey
patent: 2003/0215990 (2003-11-01), Fitzgerald et al.
patent: 0696747 (1996-02-01), None
patent: 0703476 (1996-03-01), None
patent: 0793121 (1997-09-01), None
patent: 0 843 361 (1998-05-01), None
patent: 2347520 (2000-09-01), None
patent: 61145820 (1986-07-01), None
patent: 61220339 (1986-09-01), None
patent: 99/63580 (1999-12-01), None
patent: 02/103767 (2002-12-01), None
Patent Abstracts of Japan, vol. 012, No. 080 (E-590), Mar. 12, 1988 & JP 62 219665 A (Fujitsu Ltd), Sep. 26, 1987 abstract.
Patent Abstracts of Japan, vol. 010, No. 179 (E-414), Jun. 24, 1986 & JP 61 027681 A (Res Dev Corp of Japan), Feb. 7, 1986 abstract.
A.T. Fiory et al., “Light Emission from Silicon: Some Perspectives and Applications”,Journal of Electronic Materials, vol. 32, No. 10, 2003, pp. 1043-1051.
“Structure of MBE grown semiconductor—atomic superlattices”, Tsu et al., Journal of Crystal Growth, Elsevier, Amsterdam, NL, vol. 227-228, Jul. 2001, pp. 21-26, XP004250792, ISSN: 0022-0248.
A Exploration for Si-based Superlattices Structure with Direct Band-gap, Huang et al., Mar. 29, 2001, XP002357978, available at http://phys.cts.nthu.edu.tw/workshop/ESC/mchuang.pdf.
“Transport through a nine period silicon/oxygen superlattice”, Applied Physics Letters, AIP, American Institute of Physics, Melville, NY, US, vol. 79, No. 6, Aug. 6, 2001, pp. 788-790, XP012029987, ISSN: 0003-6951.
“Silicon-Based Optoelectronics”, Proceedings of the IEEE, IEEE. New York, US, vol. 81, No. 12, Dec. 1, 1993, pp. 1687-1706, XP000426344, ISSN: 0018-9219.
Luo et al.,Chemical Design of Direct-Gap Light-Emitting Silicon, published Jul. 25, 2002, The American Physical Society; vol. 89, No. 7.
Tsu,Phenomena in Silicon Nanostructure Devices, University of North Carolina at Charlotte, Sep. 6, 2000.
Ye et al.,GaAs MOSFET with Oxide Gate Dielectric Grown by Atomic Layer Deposition, Agere Systems, Mar. 2003.
Novikov et al.,Silicon-based Optoelectronics, 1999-2003, pp. 1-6.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit comprising an active optical device... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit comprising an active optical device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit comprising an active optical device... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4007582

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.