Integrated chemical microreactor, thermally insulated from...

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S289100, C435S288500, C422S068100, C422S105000

Reexamination Certificate

active

06770471

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the invention
The present invention relates to an integrated chemical microreactor, thermally insulated from the detection electrodes, and a manufacturing method therefor.
2. Description of the Related Art
As is known, some fluids are processed at temperatures that should be regulated in an increasingly more accurate way, in particular when chemical or biochemical reactions are involved. In addition to this requirement, there is often also the need to use very small quantities of fluid, owing to the cost of the fluid, or to low availability.
This is the case, for example, of the DNA amplification process (PCR, i.e., Polymerase Chain Reaction process), wherein accurate temperature control in the various steps (repeated pre-determined thermal cycles are carried out), the need to avoid as far as possible thermal gradients where fluids react (to obtain here a uniform temperature), and also reduction of the used fluid (which is very costly), are of crucial importance in obtaining good reaction efficiency, or even to make reaction successful.
Other examples of fluid processing with the above-described characteristics are associated for example with implementation of chemical and/or pharmacological analyses, and biological examinations, etc.
At present, various techniques allow thermal control of chemical or biochemical reagents. In particular, from the end of the '80s, miniaturized devices were developed, and thus had a reduced thermal mass, which could reduce the times necessary to complete the DNA amplification process. Recently, monolithic integrated devices of semiconductor material have been proposed, able to process small fluid quantities with a controlled reaction, and at a low cost (see, for example, U.S. patent application Ser. No. 09/779,980 filed on Feb. 8, 2001, and No. 09/874,382 filed on Jun. 4, 2001, assigned to STMicroelectronics, S.r.l.).
These devices comprise a semiconductor material body accommodating buried channels that are connected, via an input trench and an output trench, to an input reservoir and an output reservoir, respectively, to which the fluid to be processed is supplied, and from which the fluid is collected at the end of the reaction. Above the buried channels, heating elements and thermal sensors are provided to control the thermal conditions of the reaction (which generally requires different temperature cycles, with accurate control of the latter), and, in the output reservoir, detection electrodes are provided for examining the reacted fluid.
In chemical microreactors of the described type, the problem exists of thermally insulating the reaction area (where the buried channels and the heating elements are present) from the detection area (where the detection electrodes are present). In fact, the chemical reaction takes place at high temperature (each thermal cycle involves a temperature of up to 94° C.), whereas the detection electrodes must be kept at a constant ambient temperature.
SUMMARY OF THE INVENTION
An embodiment of the invention provides an integrated microreactor which can solve the above-described problem.
According to embodiments of the present invention, an integrated microreactor, a manufacturing method therefore and a method of operation are provided.
The integrated microreactor is formed in a monolithic body and includes a semiconductor material region and an insulating layer. A buried channel extends a distance from the surface of the semiconductor material region. First and second access trenches extend in the semiconductor material region and in the insulating layer, and in communication with the buried channel. First and second reservoirs are formed on top of the insulating layer and in communication with the first and second access trenches. A suspended diaphragm is formed in the insulating layer, laterally to the buried channel, and a detection electrode is formed, supported by the suspended diaphragm, above the insulating layer, and inside the second reservoir.
The method of operation includes introducing a reactive fluid into the buried channel, heating and cooling the fluid in the channel, extracting the fluid from the buried channel into the second reservoir and employing the detection electrode to analyze the fluid.


REFERENCES:
patent: 5639423 (1997-06-01), Northrup et al.
patent: 5716842 (1998-02-01), Baier et al.
patent: 0798561 (1997-10-01), None
patent: 0895276 (1999-02-01), None
patent: WO94/21372 (1994-09-01), None
patent: WO98/50773 (1998-11-01), None
patent: WO00/23190 (2000-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated chemical microreactor, thermally insulated from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated chemical microreactor, thermally insulated from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated chemical microreactor, thermally insulated from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3328777

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.