Wave transmission lines and networks – Long lines – Strip type
Reexamination Certificate
2000-04-13
2003-04-22
Pascal, Robert (Department: 2817)
Wave transmission lines and networks
Long lines
Strip type
C333S246000
Reexamination Certificate
active
06552635
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates generally to the field of signal transmission systems, and more particularly to an integrated broadside conductor for a suspended transmission line and method.
BACKGROUND OF THE INVENTION
Microwave and radio frequency circuits are generally implemented by interconnecting amplifiers, antennas, transistors, receivers, and other components by a series of transmission lines. The transmission lines propagate microwave and radio frequency energy between the components of the circuit.
Initially, transmission lines were implemented using a waveguide approach that provided superior electrical performance. In this implementation, transmission lines are basically shielded pipes in which microwave and radio frequency energy is propagated. Waveguide pipes are often impractical, however, because they are difficult to install and their size and weight is excessive for many applications.
During the 1950's, striplines were described by W. E. Fromm as practical high performance transmission line structures. These structures included a twin dielectric bead stripline, a thin dielectric sheet single metal clad stripline, and a thin dielectric sheet double metal clad stripline. In each stripline, a conductor was supported between metal ground plates and had an impedance based on its spacing from the ground plates.
The twin dielectric bead stripline includes two metal ground plates sandwiching a metal strip supported by two dielectric beads. One dielectric bead is disposed above the metal strip and one dielectric bead is disposed below the metal strip. The dielectric beads form a mechanical support to maintain impedance-dependent spacing between the ground plates and the metal strip while providing good signal propagation characteristics, such as low loss tangent and low relative permittivity.
The thin dielectric sheet single metal clad stripline includes a metal strip mounted on a thin dielectric sheet. Support posts suspend the thin dielectric sheet in the air between two metal ground plates and maintain impedance-dependent spacing of the metal strip from the ground plates. The support posts are placed away from the metal strip to reduce electromagnetic interaction between the metal strip and the support post. The disadvantage to this approach is that the metal strip is adjacent to the dielectric, where loss tangent increases transmission loss.
The thin dielectric sheet double metal clad stripline includes two metal strips with one mounted on each side of a thin dielectric sheet. As in the single metal clad stripline, the thin dielectric sheet is supported between two metal ground plates by support posts which maintain the impedance-dependent spacing between the metal strips and the ground plates. The two metal strips are connected in parallel at the input and output of the circuit. Electric fields exist from each strip to its corresponding ground plane and only fringing fields exist in the dielectric sheet.
The striplines use low-loss material for the thin dielectric sheets in order to provide low dissipation loss and high performance operation. A problem with the striplines is the expense of low-loss dielectric material at microwave and radio frequencies. Exotic materials such as Alumina, Duroid (Teflon-glass), cross-linked polystyrene (Rexolite), and Beryllium Oxide (BeO) are used. These materials are extremely expensive and lead to high transmission line costs. In addition, specialized fabrication procedures are often necessary for the exotic materials which further increases transmission line cost.
SUMMARY OF THE INVENTION
The present invention provides an integrated broadside conductor for a suspended transmission line and method that substantially eliminates or reduce the disadvantages and problems associated with previous systems and methods. In particular, the present invention provides a conductor for a suspended transmission line that limits electric fields in the support layer to only fringing electric fields.
In accordance with one embodiment of the present invention, a suspended transmission line includes a dielectric support layer having a first side and a second side. The conductor is supported between first and a second ground planes and includes a first part supported on the first side of the support layer and a second part supported on the second side of the support layer. A third part of the conductor connects the first and second parts at spaced intervals along the conductor. A propagation structure is disposed between the ground planes and operable to substantially contain an electric field generated by a signal transmitted on the conductor.
Technical advantages of the present invention include providing an integrated broad side conductor for a suspended transmission line that reduces dissipation losses in the suspended transmission line. In particular, the integrated broadside conductor includes conductive traces above and below the dielectric support layer that are interconnected along the length of the transmission line. The connectors produce equal phase and amplitude between the conductive traces and reduce electric field coupling. As a result, electric fields in the support layer are limited to only fringing electric fields.
Other technical advantages of the present invention will be readily apparent to one skilled in the art from the following figures, description, and claims.
REFERENCES:
patent: 3320556 (1967-05-01), Schneider
patent: 3419813 (1968-12-01), Kamnitsis
patent: 4214217 (1980-07-01), Saito et al.
patent: 4254386 (1981-03-01), Nemit et al.
patent: 4310814 (1982-01-01), Bowman
patent: 4394633 (1983-07-01), Klein
patent: 4614922 (1986-09-01), Bauman et al.
patent: 4647880 (1987-03-01), Argaman
patent: 4772864 (1988-09-01), Otto et al.
patent: 4916457 (1990-04-01), Foy et al.
patent: 4945319 (1990-07-01), Wilson
patent: 4958165 (1990-09-01), Axford et al.
patent: 4987377 (1991-01-01), Gray et al.
patent: 5021755 (1991-06-01), Gustafson
patent: 5030935 (1991-07-01), Williams et al.
patent: 5187490 (1993-02-01), Ohta et al.
patent: 5200719 (1993-04-01), Margulis et al.
patent: 5293175 (1994-03-01), Hemmie et al.
patent: 5444453 (1995-08-01), Lalezari
patent: 5471181 (1995-11-01), Park
patent: 5581266 (1996-12-01), Peng et al.
patent: 5712607 (1998-01-01), Dittmer et al.
patent: 5760744 (1998-06-01), Sauer
patent: 5767808 (1998-06-01), Robbins et al.
patent: 5789997 (1998-08-01), Dekker
patent: 5872545 (1999-02-01), Rammos
patent: 5914695 (1999-06-01), Liu et al.
patent: 5946794 (1999-09-01), Koizumi et al.
patent: 6081988 (2000-07-01), Pluymers et al.
patent: 2002/0044098 (2002-04-01), Stein et al.
patent: 0 317 414 (1989-05-01), None
patent: 0 508 662 (1992-10-01), None
patent: 0 801 433 (1997-10-01), None
patent: 63281502 (1988-11-01), None
International Search Report dated Aug. 6, 2001 for PCT/US 01/11202 filed Apr. 6, 2001.
Peter, R., et al, “High-Performance HEMT Amplifiers with a Simple Low-Loss Matching Network,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, Sep. 1, 1991, No. 9, New York, US, pp. 1673-1675.
PCT International Search Report Dated Aug. 6, 2001 for PCT/US01/11277 Filed Apr. 6, 2001.
Mosko, United States Statutory Invention Registration H27, “Integrable Broadside Power Divider,” filed Sep. 3, 1985, published Feb. 4, 1986.
M. Saito, et al, XP-002172854, “UHF TV Tuner Using PC Board with Suspended Striplines,” IEEE Transactions on Consumer Electronics, vol. CE-24, No. 4, Nov. 1978, pp. 553-559.
PCT International Search Report dated Aug. 6, 2001 for PCT/US01/11410 filed Apr. 6, 2001.
Pozar, D.M.,Microwave Engineering, John Wiley & Sons, Inc., Second Edition, pp. 363-368, 1998.
Wilkinson, E.J., “An N-Way Hybrid Power Divider,” IRE Transactions on Microwave Theory and Techniques, vol. MTT-8, No. 1, pp. 116-118, Jan., 1960.
Saleh, A.A.M., “Planar Electrically Symmetric n-Way Hybrid Power Dividers/combiners,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 6, pp. 555-563, Jun., 1980.
Green, H.E., “The Numerical Solution of Some Important Transmissi
Jones Ray B.
Pruett Barry B.
Sherman James R.
Baker & Botts L.L.P.
Pascal Robert
Raytheon Company
Takaoka Dean
LandOfFree
Integrated broadside conductor for suspended transmission... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated broadside conductor for suspended transmission..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated broadside conductor for suspended transmission... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3054030