Integrated 3-D blade structure

Fluid reaction surfaces (i.e. – impellers) – Rotor having flow confining or deflecting web – shroud or... – Radially extending web or end plate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S183000, C416S188000, C416S24100B

Reexamination Certificate

active

06619923

ABSTRACT:

1. Field of the Invention
This invention relates to integrated blades with 3-D structure, especially the 3-D blades structure of centrifugal impellers or differs to pumps, blowers, etc.
2. Background of the Invention
Generally, the impellers and diffusers in pumps or blowers are 3-D and metal-plate blades. These blades are mostly used by high efficiency centrifugal pumps and have 3-D curved faces that can be changed according to the angles or loading distribution of fluid on impellers or diffusers runners. Such that, pumping efficiency will be improved.
Because of the 3-D curved faces of the blades, the figures of the curved faces will be hardly manufactured by using technologies of casting with pattern and plastic emergence with pattern draw. Therefore, generally, the present manufacturing method is to form blades integrally (e.g., a plurality of blades could be formed integrally), but this would be for 2-D curved blades only and not for perfect 3-D curved faces. Because simple blade angles do not match fluid angles and loading requirements, pump efficiency shall be reduced, and would only work with centrifugal pumps which are cheap and have low efficiency.
Prior art manufacturing technologies could make 3-D curved faces of blades. On the other hand, large amount of blades, complicated designs, to position details for 3-D impellers, etc., are the short points for prior art technologies. Thus, firstly, manufacturing blades piece by piece via wax is the only method for prior art method. Then, blades could be positioned in front of impellers and between back covers, and followed with pour for finishing casting. Alternatively, blades could be manufactured piece by piece via plastic emergence with forming and positioning. These blades could be individually placed before impellers and between back covers for a whole set of impeller. The processes for manufacturing impellers and diffusers via plastic emergence and casting, discussed above are very complicated and not economical.
Besides, for some specially designed pumps, such as focusing on pumping functions of de-swirl of diffuser runner, or promoting pumping efficiency, the prior art technologies are impellers or diffusers with “Multi-Row” structures. For example, the patent of Taiwan Publication Number 342425, U.S. Pat. Nos. 5,310,309, 4,877,370, 5,417,547, 5,516,263, 4,354,802, etc., are discussing “Multi-Row” blade structures for applications and approaches. Nevertheless, these prior art 3-D curved and “Multi-Row” blade structures made by punching metal-plate will be manufactured, positioned and assembled piece by piece, and this kind of structure will increase multiple blades. Therefore, the assembly is difficult and manufacturing cost could be high. Thus, such technology still needs some advanced skill.
SUMMARY OF THE INVENTION
The first object of the invention is to supply an integrated 3-D blade structure. Originally, the technology was to manufacture, position and assemble blades separately, but now, the processes can be coordinated with a few of integrated pieces such that, those few integrated blade pieces are positioned, assembled or further worked simultaneously. The advantages of the combination mentioned above are not only that each blade has a 3-D curved face and a high pumping efficiency, but also greatly decreases the difficulty of positioning assembling, and the cost of manufacturing.
The second object is to supply an integrated 3-D blade structure having a large amount of blades with a few pieces that can be formed by plastic emergence with forming or wax for the entire structure. The only way is to combine the few pieces and the “Multi-Row” blade structure can be assembled rapidly. The advantages of the combined technology are having nice 3-D curved face and high pumping efficiency for each blade and simplifying the processes of assembly and decreasing cost.
The preferred embodiment for the integrated 3-D blade structure of the invention includes at least two integrated pieces that are formed at one time. Each integrated piece has a plurality of blades with shorter 3-D curved faces and relative let-in structure. It is easily assembling at least two integrated pieces via the let-in structure, and the shorter blades can be adjacent relatively to form complete 3-D curved face depending on different design or keep a suitable distance in between to form a “Multi-Row” blade structure. Originally, a complete blade with complicate 3-D curved face could be divided to several shorter lengths for manufacturing, thus the blade could be assembled and formed by plastic emergence with forming or wax forming. Therefore, resulting in the amount of components being greatly decreased and the position and assembly of blades being more convenient and cost being reduced. Furthermore, the impeller and diffuser with “Multi-Row” can be made by plastic or casting.


REFERENCES:
patent: 629121 (1899-07-01), Bicalky
patent: 6033183 (2000-03-01), Genster
patent: 58-133498 (1983-08-01), None
patent: 423944 (1974-09-01), None
patent: 1267058 (1986-10-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated 3-D blade structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated 3-D blade structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated 3-D blade structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3006562

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.