Stock material or miscellaneous articles – Structurally defined web or sheet – Including variation in thickness
Reexamination Certificate
2001-12-20
2003-08-26
Loney, Donald J. (Department: 1772)
Stock material or miscellaneous articles
Structurally defined web or sheet
Including variation in thickness
C428S210000, C428S192000, C428S213000, C029S889722, C156S089110, C156S089260, C156S148000, C060S752000, C060S753000, C060S756000
Reexamination Certificate
active
06610385
ABSTRACT:
BACKGROUND OF INVENTION
1. Field of Invention
The present invention generally relates to air-cooled components, such as combustor liners for gas turbine engines. More particularly, this invention is directed to a process for incorporating surface features along the airflow passages of a component, such as airflow enhancement features to improve the cooling efficiency of the component.
2. Description of the Related Art
Higher operating temperatures for gas turbine engines are continuously sought in order to increase their efficiency. However, as operating temperatures increase, the high temperature properties of the engine components must correspondingly increase. While significant advances have been achieved through formulation of iron, nickel and cobalt-base superalloys, the high temperature properties of such alloys are often insufficient to withstand long exposures to operating temperatures within the turbine, combustor and augmentor sections of some high-performance gas turbine engines. As a result, internal cooling of components such as combustion liners, blades (buckets) and nozzles (vanes) is often employed, alone or in combination with a thermal barrier coating (TBC) system that thermally protects their exterior surfaces. Effective internal cooling often requires a complex cooling scheme in which air is forced through passages within the component and then discharged through cooling holes at the component surface.
The performance of a turbine component is directly related to the ability to provide a generally uniform surface temperature with a limited amount of cooling air. To promote uniform convective cooling of the component interior, it is conventional to cast airflow enhancement features, such as turbulators (trip strips) and flow guides, on the surfaces of the component that define the cooling passages. The size, shape and placement of the airflow enhancement features affect the amount and distribution of air flow through the cooling circuit and across the external surfaces downstream of the cooling holes, and as such can be effective in significantly reducing the service temperature of the component.
Ceramic matrix composite (CMC) materials have been considered for combustor liners and other high-temperature components. Continuous fiber-reinforced CMC materials are typically woven from tows (bundles of individual filaments) using conventional textile weave patterns, in which two or more sets of tows are woven, with the individual tows of each set passing over and under transverse tows of the other set or sets. As with air-cooled components formed of metal alloys, it is desirable to incorporate airflow enhancement features in air-cooled CMC components. However, because CMC materials exhibit relatively poor interlaminar tension and shear strengths, airflow enhancement features and other surface features cannot be reliably attached using secondary attachment manufacturing procedures if the component is intended for use in the high thermal strain environment of a gas turbine engine. Moreover, because of tow size and weave limitations, it is difficult to weave small geometry turbulators and flow guides (typically projecting from the surrounding surface a distance of about 0.3 to about 2.0 mm) as integral features of a CMC component. Consequently, while airflow enhancement features of the type used with air-cooled metal components can generally be incorporated in the metal casting process so as to be integral with the primary component, attempts to design integral turbulators, flow guides and other surface features in CMC materials have proven problematic. Faithfully reproducing turbulators and other extremely small-scale, detail geometric features in continuous fiber-reinforced CMC materials is particularly difficult.
In view of the above, while CMC materials offer the capability of significantly increasing the maximum operating temperatures sustainable by turbine and other high-temperature components, it would be desirable to incorporate airflow enhancement features in air-cooled CMC components in order to further extend component life and increase engine efficiency.
SUMMARY OF INVENTION
According to the present invention, there is provided an air-cooled component formed at least in part by a CMC material, and having at least one cooling passage equipped with an integrally-formed surface feature, such as an airflow enhancement feature. The CMC material comprises at least first and second sets of tows woven together to form a preform that is infiltrated with a matrix material. The tows within each set are side-by-side to each other, but transverse to tows of the other set, with tows of each set passing over and under transverse tows of the other. The surface feature is integrally defined at a surface of the cooling passage by an insert member disposed between adjacent tows of at least the first set of tows. In the method of forming the integral surface feature, the insert member is placed between the adjacent tows of the first set of tows during the weaving process, preferably when forming the outermost layer (lamina) of the preform. The insert member has a cross-sectional size larger than the adjacent tows, thereby forming a protrusion in the preform and, after infiltration, consolidation and curing, the surface feature in the surface of the CMC material. The surface feature projects into the cooling passage relative to the immediately surrounding surface region of the passage surface.
In view of the above, the present invention entails integrally forming one or more surface features, particularly airflow enhancement features such as turbulators and flow guides, by strategically placing insert members in the CMC preform during the initial preforming step of the CMC process. The insert member is able to create a functional turbulator or flow guide in the form of a permanent integral surface feature after the woven tows are fully processed, including infiltration with a suitable matrix material, densification and consolidation, and curing of the matrix material to form the CMC. As a result of being integrally formed, the surface feature exhibits better structural integrity as compared to a surface feature added to a CMC by a secondary attachment technique. The manner in which the surface feature is an integral feature retained by the woven fiber network provides a load shielding mechanism, capable of keeping interlaminar tension and shear stresses on the surface feature well within the structural capabilities of the CMC material.
Other objects and advantages of this invention will be better appreciated from the following detailed description.
REFERENCES:
patent: 5184455 (1993-02-01), Ewing et al.
patent: 5331816 (1994-07-01), Able et al.
patent: 5709919 (1998-01-01), Kranzmann et al.
Cusick Ernest
General Electric Company
Hartman Domenica N. S.
Hartman Gary M.
Loney Donald J.
LandOfFree
Integral surface features for CMC components and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integral surface features for CMC components and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integral surface features for CMC components and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114171