Insulation displacement connector with a pressure-receiving...

Electrical connectors – Contact comprising cutter – Insulation cutter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06482026

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention belongs to a technical field of an insulation displacement connector having contacts for connecting cores of electric wires by insulation displacement. Particularly, the present invention relates to an insulation displacement connector in which an operation type locking mechanism to be engaged with a partner connector is provided in an outer wall of a connector housing.
2. Description of the Related Art
Conventionally, a crimp style connector having contacts for crimping cores of electric wires has been used widely. As such a crimp style connector, there is known a connector having an operation type locking mechanism provided in an outer wall of a connector housing so as to be engaged with a partner connector (for example, see Japanese Patent No. 3009653). The locking mechanism includes a support portion and an arm. The support portion is formed to protrude outward from the outer wall of the connector housing, and the arm has an engaging portion provided at a front end and shaped like a hook curved toward the outer wall, a gripping portion provided at a rear end, and an intermediate portion connected to the support portion. When the crimp style connector including the locking mechanism is connected to the partner connector, the engaging portion of the arm of the locking mechanism is engaged with an engaged portion of the partner connector so that the two connectors are connected to each other strongly. Hence, even in the case where the crimp style connector suffers draw-out force from the electric wires, the crimp style connector is hardly drawn out from the partner connector. Hence, connection failure can be prevented from occurring. When the gripping portion is pressed, the engagement is released so that the crimp style connector can be removed from the partner connector easily.
The operation of crimping electric wires to the crimp style connector is carried out by the steps of: overlapping cores of front ends of electric wires with end potions of contacts respectively; crimping the cores with barrels respectively while plastically deforming the barrels by a crimping tool; and inserting the contacts including the electric wire one by one into cavities of the connector housing. Hence, a large number of steps are required, so that the manufacturing cost becomes high. Moreover, it is difficult to shorten the required time for delivery of such connectors including electric wires, and this problem becomes remarkable in a multi-pole connector in which one connector has a large number of contacts. In this respect, an insulation displacement connector having contacts for insulation displacement of cores of electric wires is resolutely advantageous. The insulation displacement connector can achieve reduction in the manufacturing cost and shortening the required time for delivery of such a connector including an electric wire regardless of the number of poles. This is because insulation displacement of electric wires to the insulation displacement connector is performed by pressing all electric wires simultaneously into slots of contacts by an insulation displacement machine in the condition that all the contacts are inserted into the cavities of the connector housing. Generally, the insulation displacement machine has an insulation displacement stand for supporting the insulation displacement connector, and a movable unit which moves back and forth relative to the insulation displacement stand. Electric wire insertion holes communicating with the slots of the contacts are opened in one outer wall of the connector housing of the insulation displacement connector. The other outer wall opposite to the one outer wall is provided as a pressure-receiving wall so that an insulation displacement load is received by the pressure-receiving wall. The insulation displacement connector is set in the insulation displacement machine so that the pressure-receiving wall comes into contact with the insulation displacement stand. The electric wires are positioned on the electric wire insertion holes and pressed by a punch mounted in the movable unit so that the electric wires are forced into the slots. In this manner, insulation displacement is performed simultaneously.
If the aforementioned locking mechanism is provided in the insulation displacement connector, reduction in the manufacturing cost and shortening in the required time for delivery of such a connector including an electric wire, which are advantages of the insulation displacement connector, can be achieved while connection failure due to the locking mechanism is prevented from occurring between the connector and a partner connector. In such a case, however, the locking mechanism is provided in the pressure-receiving wall in the condition that the locking mechanism does not disturb insertion of the electric wires into the electric wire insertion holes. If so, the pressure-receiving wall cannot come into surface contact with the insulation displacement stand of the insulation displacement machine because of interference of the locking mechanism. Hence, the load for insulation displacement cannot be received by the insulation displacement connector steadily, so that the electric wires cannot be connected with the connector by the insulation displacement machine. Particularly in a multi-pole connector, this problem becomes serious because the load for insulation displacement becomes large. For this reason, there is no insulation displacement connector including a locking mechanism which has been put into practical use.
In such a multi-pole connector, when one end side of a contact raw receives stronger draw-out force than the draw-out force acting on the other end side in the condition that draw-out force from the electric wires acts on the connector, the connector is inclined to the partner connector. Hence, the one end side is floated up from the partner connector, and there is therefore a problem that contact failure occurs between the one-end side contact and the partner contact. Particularly such a connector including a locking mechanism is apt to face such a problem because the connector is often used in the condition that intensive draw-out force acts on the connector. It is also preferable from the point of view of preventing connection failure that a sense of completion of connection (hereinafter referred to as clicking sense) is obtained intensively when the connector is connected to the partner connector.
SUMMARY OF THE INVENTION
The present invention is designed upon such circumstances and an object of the present invention is to provide an insulation displacement connector provided with a locking mechanism in which: a portion of a connector housing for receiving slots of contacts is shifted to the longitudinal direction of the contacts more than a locking mechanism so that a pressure-receiving wall for receiving a load for an insulation displacement is secured to make it possible to connect electric wires with an insulation displacement machine; and the fitting length of the contacts is kept sufficient so that connection failure can be prevented and an intensive clicking sense can be obtained even in the case where the insulation displacement connector suffers draw-out force from the electric wires.
In order to achieve the above object, the insulation displacement connector according to a first aspect of the invention has a feature that the insulation displacement connector comprises: male or female contacts each having a connection portion and slots, the connection portion being provided at a front end and being brought into contact with a partner contact on an assumption that a lengthwise direction is regarded as a front-rear direction, the slots being opened toward one heightwise direction perpendicular to the front-rear direction with insulation displacement and being provided in a side more rear than the connection portion for fitting a core at a front end of an electric wire inserted from the one heightwise direction; a connector housing having cav

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Insulation displacement connector with a pressure-receiving... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Insulation displacement connector with a pressure-receiving..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Insulation displacement connector with a pressure-receiving... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2921568

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.