Instrumental measurement of the neuro-psycho-physical state...

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S587000

Reexamination Certificate

active

06416485

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to instrument systems for data acquisition, processing and evaluation for determining the neuro-psycho-physical state of a person. In particular, the present invention relates to a portable system for automatically determining the neuro-psycho-physical condition of patients affected by Paralysis Agitans (Parkinson's disease) and other similar type diseases.
BACKGROUND OF THE INVENTION
Parkinson's disease is a degenerative process of the central nervous system having a slow and progressive evolution. The anatomopological alteration includes damage of neurons having dopaminergical melaninic content, which is located in the cerebral trunk, with consequent reactive gliosys. Biochemical studies have demonstrated a dysfunction of the dopaminergical nigrostriatal system. Dopamine is a chemical medium by which neurons communicate among each other. Parkinson's disease exhibits rigidity (muscular hypertonicity), akinesys, and tremor.
Rigidity opposes passive stretching of the muscles with a constant resistance that yields movement. There is a prevalence of the hypertonicity of the flexor muscles and this explains the general posture of the patient: head and trunk forward leaning, arms slightly flexed, and at the hand level the thumb is flexed.
Acinesy is characterized by slowness and global reduction of voluntary mobility. The patient is inexpressive. There is a reduction of the pendular movements of the arms during walking and a person with Parkinson's disease has difficulties in executing alternate movements rapidly, like drumming with fingers, making moving shadows, and making flex-extensions of the first finger. In addition, handwriting tends to become small (micrography), speech tends to become monotonic with sudden accelerations.
Acinesy may have a unilateral beginning and predominance. Sometimes following an emotion, acinesy may suddenly disappear. This demonstrates that the neural structures for the movements are not inhibited, but their stimulation requires exceptional excitations.
Tremor is present at rest. It generally disappears when executing a voluntary movement, during sleep, and following a complete muscle relaxation. Emotions, stress, and concentration efforts stimulate tremor. Moreover, tremor of an upper limb may appear while exerting the other upper limb. Generally, it is a regular tremor with a rhythm of 4-8 cycles per second. It starts at the extremity of the upper limb with alternate movements of flexal-extension of the fingers and of the thumb (similar to the gesture of counting coins). Other symptoms are hypersalivation, hypersweating, and orthostatic hypotension while osteotendineous reflexes are normal.
In view of the evolutive character of the disease, methods for multiparametric assessment have been developed to provide an incruent instrumental indication of the neuro-psycho-physical state of a patient.
Multiparametric measurement of reaction times of an individual may be useful for establishing the state of neuro-psycho-physical health of a generally healthy person. This is in addition to aiding diagnosis and monitoring of the progress of Parkinson's disease. Multiparametric measurement is an excellent way of discriminating alterations of reactive parameters due to other causes than the disease itself, such as the ingestion/consumption of alcoholics, drugs, psycho-pharmaceutical products or other substances that have an effect on the reactive and coordination capacities of a person.
A known method of diagnostic testing is the multiparametric measurement of the times of vocal reaction, which is described in the book “Neurologie del comportamento (errori e correzione del controllo cerebrate)” by P. Pinelli, Ed. Ambrosiana, 1997.
The person is instructed to provide a certain reply to a given signal. The reply may include pressing a push button as fast as possible. Stimulations of various types occur from time to time, and the person must press on a keyboard a certain key associated to the particular stimulation. To restrict the period of attention of the person, an alerting signal may precede the stimulation assignment.
The stimulation may be visual or audio. It may be a displayed test, an acronym, a word, or a phrase. The stimulations are presented in casual succession and the person may be called to pronounce the displayed expressions loudly to implement what is referred to as a reading reaction. Other stimulations may be figures, of which the person must pronounce the name, implementing what is normally called a reaction to figure identification.
In all these cases, every sound expressed is recorded as such through a microphone. In all the reactions, the time between the display of the stimulation to the instant when the answer begins is defined as the time of reaction. Since individual reaction time is normally slightly different from the preceding one and from the successive one in a series of reactions tests, the average and the relative standard deviation for a certain number of reaction tests to the same type of stimulation are calculated and recorded.
Typically, to obtain a significant average value about 10-12 reactions tests may be necessary. The brain functions statically and such a mode of functioning implies oscillations of the times and characters of performances. It is therefore important to detect also the duration of the reply beside its correctness, both in relationship to the stimulation as well as a sequence of movements. Accuracy of the reply is also important and in case of verbal replies, even sound frequencies may be analyzed.
The utility of measuring also the duration of the reply depends from the fact that it reflects the sequence of the various movements that are notably commanded through very complex neural controls. Another method of test is described in the article: “Advances In Occupational Medicine And Rehabilitation” by F. Ceriani et al.
This method rests on two tests. One of immediate reading and one of retarded reading. In the immediate reading, the patient is requested to pronounce the word immediately as displayed on the screen. In the retarded reading test, the patient must wait for an execution command given by a series of asterisks that appear above and below the displayed word. In a first test the reaction time is measured. In a second test the time for executing the central cerebral processing is assessed, and only after the time taken by the articulation. The patient is requested to translate a conceptual structure in a linguistic structure highlighting all the aspects, such as the grammatical coding of a message, the coding of a phonetic diagram and of a diagram of the articulation of each word.
In the last phase a phonetic diagram based on the muscle reaction, on the larynx and supra-larynx respiration, and on the oromandibular system is effected. In this way the synchronization between articulation and time necessary to express the words may be verified.
A different approach of instrumental testing includes a bioengineering system of acquisition and production of data on the movement of a finger. This system was developed by Professor Alberto Rovetta, and is based on the following protocols: fast movement, uncontrolled movement, controlled movement, and movement with virtual control.
Referring to fast movement, the person must touch from an initial reference point with the first finger of the hand a target as fast as possible. This is designed to measure the impressed force while in parallel other parameters are detected, among which include the angular position and the velocity of the finger and the reaction time.
Referring to uncontrolled movement, the person must make the same movement of the preceding protocol without watching their own finger. Instead, the person must do it by memorizing the procedure learned during the execution of the preceding protocol of fast movement, thus activating the person's working memory. For a controlled movement, the person must control the speed of execution in such a way that by obse

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Instrumental measurement of the neuro-psycho-physical state... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Instrumental measurement of the neuro-psycho-physical state..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Instrumental measurement of the neuro-psycho-physical state... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2861733

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.