Instrument pouch for sterilization process and method of...

Chemical apparatus and process disinfecting – deodorizing – preser – Process disinfecting – preserving – deodorizing – or sterilizing – Using disinfecting or sterilizing substance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S300000, C206S370000, C206S438000, C229S069000

Reexamination Certificate

active

06391260

ABSTRACT:

BACKGROUND
The present disclosure relates, in general, to a trayliner for a sterilization process. Even more particularly, the present disclosure relates to a trayliner for cushioning articles in a low temperature hydrogen-peroxide gas plasma sterilization system. The present disclosure also relates to an instrument pouch for protecting an article, such as a surgical instrument, during a low temperature hydrogen-peroxide gas plasma sterilization process.
As is well known, articles used in the health care industry, such as surgical instruments, must be sterilized before and after each use. Many articles, such as fiber optic endoscopes, laser handpieces, power drills and ophthalmic devices, are very delicate and, thus, are preferably cushioned when being sterilized to prevent costly repairs and to reduce down time.
There are generally three sterilization processes for use on surgical equipment: high temperature steam, ethylene oxide, and low temperature hydrogen-peroxide gas plasma. For a number of well-known reasons, hydrogen-peroxide gas plasma sterilization is becoming the preferred sterilization method. For example, hydrogen-peroxide gas plasma sterilization has significantly less corrosive effect on metal surgical instruments, and leaves no residue that may cause the sterilized surgical instruments to be irritating or toxic to patients. In addition, hydrogen-peroxide gas plasma sterilization produces no toxic byproducts and requires no special ventilation or aeration. Hydrogen-peroxide gas plasma sterilization is also faster than other sterilization processes since a waiting period to allow toxic byproducts to dissipate is unnecessary.
A STERRAD® hydrogen-peroxide gas plasma sterilization system available from Advanced Sterilization Products of Irvine, Calif., for example, is designed to provide non-toxic, dry, low-temperature sterilization in about one hour, without toxic residues. However, the STERRAD® system is not usable with cellulose-based products like linen or paper normally used in other sterilization processes. Cellulose-based products, as well as many other materials commonly used in sterilization, are highly absorbent and trap fluid during the sterilization process. During hydrogen-peroxide gas plasma sterilization, absorbent materials can cause an unwanted residue to be left on the articles being sterilized. Thus, the use of such absorbent materials in the hydrogen-peroxide sterilization process requires different cycle parameters to achieve sterilization, without leaving a residue on the article being sterilized, in a fixed cycle of the current design.
The STERRAD® system includes a sterilization chamber and a tray for holding surgical instruments and articles such as fiber optic endoscopes, laser handpieces, power drills and ophthalmic devices, within the sterilization chamber during the sterilization process. The tray includes a base having a multiplicity of holes for allowing plasma to flow there through and contact the article being sterilized during the sterilization process.
One existing trayliner for use with the STERRAD® system is available from Cygnus Medical of Branford, Conn., under the trademark Plasma-Cel™ and consists of a sheet of “open cell” foam, more specifically open cell polyethylene foam. While this trayliner is not cut to the exact dimensions of the tray, the trayliner generally covers the base of the tray of the STERRAD® system to cushion surgical instruments during the sterilization process. The open cell structure of the plastic foam trayliner allows plasma to pass directly through the trayliner, such that the foam trayliner does not interfere with the passage of plasma through the tray holes. While this particular open cell foam trayliner has been found to work with the STERRAD® system, since open cell polyethylene is relatively expensive, the Plasma-Cel™ trayliner typically is reused a number of times to make each individual trayliner cost effective. Thus, users are instructed that they may reuse the Plasma-Cel™ trayliner up to five times. It is unlikely, however, that users feel comfortable with the idea of reusing, and keeping track of the number of uses of, a sterilization trayliner in a sterile hospital environment. Thus, the relatively expensive open cell polyethylene foam trayliners are often disposed of after a single use. The sheets are provided as precut individual pieces or in a roll. Cygnus Medical also provides instrument pouches under the trademark Plasma-Cel™, which are also made of “open cell” polyethylene foam. Cygnus instructs its customers to sterilize lumen devices in the Plasma-Cel™ pouches only, since such devices are not properly sterilized when used with the Plasma-Cel™ trayliners.
U.S. Pat. Nos. 4,142,632, D263,076, and D263,745 to Sandel disclose surgical instrument holders and instrument tip protector devices. However, the holders and devices disclosed by Sandel are also made of open-cell foam. In particular, the holders and devices disclosed by Sandel are made of open-cell polyurethane ester foam.
What is still needed, accordingly, is a trayliner for cushioning articles, such as fiber optic endoscopes, laser handpieces, power drills and ophthalmic devices, in a hydrogen-peroxide gas plasma sterilization system. Preferably, the trayliner will have low absorbency, yet will allow the passage of plasma there through, such that an article can effectively be sterilized in a hydrogen-peroxide gas plasma sterilization system. In addition, the trayliner will preferably be relatively inexpensive such that disposing of the trayliner after a single use is cost effective.
What is also still needed is an instrument pouch for protecting articles, such as fiber optic endoscopes, laser handpieces, power drills and ophthalmic devices, during a hydrogen-peroxide gas plasma sterilization process. Preferably, the instrument pouch will have low absorbency, yet will allow the passage of plasma there through, such that an article is protected, yet can effectively be sterilized in a hydrogen-peroxide gas plasma sterilization system. In addition, the instrument pouch will preferably be relatively inexpensive such that disposing of the instrument pouch after a single use is cost effective.
SUMMARY
Accordingly, a method for sterilizing an article in a hydrogen-peroxide gas plasma sterilization unit is provided. The method includes placing the article within a foam plastic instrument pouch having a closed cell construction, and positioning the closed cell foam plastic instrument pouch containing the article within the sterilization chamber of the sterilization unit. The hydrogen-peroxide gas plasma sterilization unit is then operated such that the article within the instrument pouch is sterilized, whereby the instrument pouch containing the article is removed from the sterilization unit. The sterilized article is left within the instrument pouch until the sterilized article is actually used.
According to an additional aspect of the present disclosure the foam plastic instrument pouch is provided with a multiplicity of holes.
According to another aspect of the present disclosure the foam plastic instrument pouch is configured with a multiplicity of holes and the instrument pouch containing the article to be sterilized is placed in a tray of the sterilization system such that at least a portion of the holes of the instrument pouch will be generally aligned with at least a portion of a multiplicity of holes of a base of the tray. The tray containing the foam plastic instrument pouch and the article is then placed within the sterilization unit.
According to another aspect of the present disclosure, the foam plastic instrument pouch is disposed of when the sterilized article is actually used.
An instrument pouch for containing and protecting an article during a sterilization process is also provided. The pouch includes a foam plastic backing sheet for lining a base of a tray, the base having a multiplicity of holes, and a foam plastic pocket secured to the backing sheet such that at least a portion of an article to be sterilized can be rec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Instrument pouch for sterilization process and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Instrument pouch for sterilization process and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Instrument pouch for sterilization process and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2905851

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.