Insertable stent and methods of making and using same

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Hollow or tubular part or organ

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S213000, C606S214000

Reexamination Certificate

active

06585773

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to stent technology. Advances of laser tissue welding in urinary tract repair are able to provide a rapid watertight seal and avoid potential lithogenesis caused by conventional sutures and staples. However, some problems have limited the clinical use of this technology, such as unreliable fusion strength, thermal damage of welded tissue and lack of a standard reference endpoint during welding procedures.
In U.S. Pat. No. 5,549,122, a method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
In U.S. Pat. No. 5,141,516, a dissolvable anastomosis stent comprises a first member for receiving a first vessel stump, a second member for receiving a second vessel stump, and engaging means for engaging the first and second members where the engaging means and members are constructed of a biocompatible, non-toxic material which substantially completely dissolves mammalian bodily fluids. In addition, methods for preparing the dissolvable anastomosis stent and methods for surgical mammalian anastomoses using the dissolvable anastomosis stent are disclosed.
In U.S. Pat. No. 5,306,286, an absorbable stent for placement at the locus of a stenotic lesion which is flexible and compliance for safe and effective delivery to the cite of a coronary obstruction, for example, and so as to avoid arterial rupture or aneurysm formation while under continuous stress of a beating heart. The stent is expandable from a reduced diameter configuration, which facilitates delivery to the cite of a targeted arterial obstruction, to an expanded configuration when disposed within the targeted area The stent can be carried to the cite to be treated and expanded to its supporting diameter on any suitable expandable catheter such as a mechanically expandable catheter or a catheter having an inflatable balloon. The stent is formed so as to have a wall with pores and/or holes to facilitate tissue ingrowth and encapsulation of the stent. The stent will subsequently be bioabsorbed to minimize the likelihood of embolization of the dissolved material.
In U.S. Pat. No. 5,192,289, a stent or support is disclosed for use in the connection or anastomosis of severed vessels to support and seal the anastomotic site. The stent includes substantially cylindrical sections separated by a tapered transitional region. The cylindrical sections are provided with flanges that define tapered sealing surfaces. The dimensions of the two sections are selected to correspond with the diameter of the portions of the vessel to be supported. The stent is preferably made of polyglycolic acid and the dimensions of the stent are selected to provide optimal support and sealing characteristics with a minimum of damage to the epithelial lining of the vas deferens. In two preferred applications, the stent is used in anastomosis of the severed ends of a vas deferens and a Fallopian tube. A gauge is used to measure the severed ends and, in that manner, determine the appropriate dimensions of the stent.
In U.S. Pat. No. 5,425,739, a stent or support is disclosed for use in the connection or anastomosis of severed vessels to support and seal the anastomotic site. The stent includes substantially cylindrical sections separated by a tapered transitional region. The cylindrical sections are provided with flanges that define tapered sealing surfaces. The dimensions of the two sections are selected to correspond with the diameter of the portions of the vessel to be supported. The stent is preferably made of polyglycolic acid and the dimensions of the stent are selected to provide optimal support and sealing characteristics with a minimum of damage to the epithelial lining of the vas deferens. In three preferred applications, the stent is used in anastomosis of the severed ends of a vas deferens, a Fallopian tube, and a blood vessel. A gauge is used to measure the severed ends and, in that manner, determine the appropriate dimensions of the stent. A technique of forming porous stents, and other structures, is also disclosed.
In U.S. Pat. No. 5,662,712, a method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby
In U.S. Pat. No. 5,762,625, a luminal stent inserted and fixed in a vessel, such as a blood vessel, so as to maintain the shape of the vessel, and a device for inserting and fixing the luminal stent, are disclosed. The luminal stent is formed of a yarn of bioabsorbable polymer fibers, which yarn is shaped in a non-woven non-knitted state in, for example, a meandering state, around the peripheral surface of an imaginary tubular member. The bioabsorbable polymer includes polylactic acid, polyglycol acid, polyglactin, polydioxanone, polyglyconate, polyglycol acid and a polylactic acid-.epsilon.-caprolactone copolymer. The device for inserting and fixing the luminal stent consists in a catheter having a balloon-forming portion in the vicinity of a distal end thereof and the luminal stent fitted on the balloon-forming portion and affixed to the balloon-forming portion by a bio-compatible material, such as an in vivo decomposable polymer, such as polylactic acid, water-soluble protein or fibrin sizing agent.
In U.S. Pat. No. 5,292,362, a composition is disclosed for bonding separated tissues together or for coating tissues or prosthetic materials including at least one natural or synthetic peptide and at least one support material which may be activated by energy and to methods of making and using the same.
In U.S. Pat. No. 5,527,337, a bioabsorbable stent is provided for placement at the locus of a stenotic portion of a body passage, such as a blood vessel, which is flexible and compliant for safe and effective delivery to the site of the stenotic portion of, for example, a blood vessel, and so as to avoid the disadvantages of chronic implantation, such as arterial rupture or aneurism formation while exposed to the continuous stresses of a beating heart. The stent is formed from a bioabsorbable material and is porous or has apertures defined there through to facilitate tissue ingrowth and encapsulation of the stent. The stent is encapsulated and biodegrades or bioabsorbs within a period of days, weeks or months as desired following encapsulation to thereby minimize the likelihood of embolization or other risks of the dissolved material and to avoid the disadvantages of chronic implantation.
In U.S. Pat. No. 5,209,776, a tissue bonding and sealing composition and method of using the same is provided. Disclosed is a composition for bonding s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Insertable stent and methods of making and using same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Insertable stent and methods of making and using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Insertable stent and methods of making and using same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3080590

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.