Insect control with a hypersensitive response elicitor

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

530350, 536 237, 536 2374, A01N 3718

Patent

active

059770600

ABSTRACT:
The present invention relates to a method of controlling insects on plants. This involves applying a hypersensitive response elicitor polypeptide or protein in a non-infectious form to a plant or plant seed under conditions effective to control insects on the plant or plants produced from the plant seed. Alternatively, transgenic plants or transgenic plant seeds transformed with a DNA molecule encoding a hypersensitive response elicitor polypeptide or protein can be provided and the transgenic plants or plants resulting from the transgenic plant seeds are grown under conditions effective to control insects.

REFERENCES:
patent: 4569841 (1986-02-01), Liu
patent: 4597972 (1986-07-01), Taylor
patent: 4601842 (1986-07-01), Caple et al.
patent: 4740593 (1988-04-01), Gonzalez et al.
patent: 4851223 (1989-07-01), Sampson
patent: 4886825 (1989-12-01), Ruess et al.
patent: 4931581 (1990-06-01), Schurter et al.
patent: 5057422 (1991-10-01), Bol et al.
patent: 5061490 (1991-10-01), Paau et al.
patent: 5135910 (1992-08-01), Blackburn et al.
patent: 5173403 (1992-12-01), Tang
patent: 5217950 (1993-06-01), Blackburn et al.
patent: 5243038 (1993-09-01), Ferrari et al.
patent: 5244658 (1993-09-01), Parke
patent: 5260271 (1993-11-01), Blackburn et al.
patent: 5348743 (1994-09-01), Ryals et al.
patent: 5494684 (1996-02-01), Cohen
patent: 5523311 (1996-06-01), Schurter et al.
patent: 5550228 (1996-08-01), Godiard et al.
patent: 5552527 (1996-09-01), Godiard et al.
patent: 5650387 (1997-07-01), Wei et al.
patent: 5708139 (1998-01-01), Collmer et al.
Inbar et al., "Elicitors of Plant Defensive Systems Reduce Insect Densities and Disease Incidence," Journal of Chemical Ecology, 24(1): 135-149 (1998).
Jin et al., "A Truncated Fragment of Harpin.sub.Pss Induces Systemic Resistance to Xanthomonas campestris pv. Oryzae in Rice," Physiological and Molecular Plant Pathology, 51:243-257 (1997).
Frederick et al., "The WTS Water-Soaking Genes of Erwinia stewartii are Related to hrp Genes," Seventh International Symposium on Molecular Plant Microbe Interactions, Abstract No. 191 (Jun. 1994).
Wei et al., "Proteinaceous Elicitors of the Hypersensitive Response from Xanthomonas campestris pv. glycines," Seventh International Symposium on Molecular Plant Microbe Interactions, Abstract No. 244 (Jun. 1994).
Preston et al., "The HrpZ Proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are Encoded by an Operon Containing Yersinia ysc Homologs and Elicit the Hypersensitive Response in Tomato but not Soybean," Mol. Plant-Microbe Interact., 8(5):717-32 (1995).
Bauer et al., "Erwinia chrysanthemi hrp Genes and their Involvement in Elicitation of the Hypersensitive Response in Tobacco," Sixth International Symposium on Molecular Plant Microbe Interactions, Abstract No. 146 (Jul. 1992).
Stryer, L., "Enzymes are Highly Specific," Biochemistry, San Francisco: W.H. Freeman and Company, p. 116 (1975).
Keen et al., "Inhibition of the Hypersensitive Reaction of Soybean Leaves to Incompatible Pseudomonas spp. by Blasticidin S, Streptomycin or Elevated Temperature," Physiological Plant Pathology, 18:325-37 (1981).
Lerner, R.A., "Tapping the Immunological Repertoire to Produce Antibodies of Predetermined Specificity," Nature, 299:592-96 (1982).
Staskawicz et al., "Cloned Avirulence Gene of Pseudomonas Syringae pv. glycinea Determines Race-specific Incompatiblity on Glycine max (L.) Merr.," Proc. Natl. Acad. Sci. USA, 81:6024-28 (1984).
Bauer et al., "Erwinia chrysanthemi Harpin.sub.Ech : An Elicitor of the Hypersensitive Response that Contributes to Soft-Rot Pathogenesis," MPMI, 8(4):484-91 (1995).
Huang et al., "Characterization of the hrp Cluster from Pseudomonas syringae pv. syringae 61 and TnphoA Tagging of Genes Encoding Exported or Membrane-Spanning Hrp Proteins," Molec. Plant-Microbe Interact., 4(5):469-79 (1991).
Huang et al., "The Pseudomonas syringae pv. syringae 61 hrpH Product, an Envelope Protein Required for Elicitation of the Hypersensitive Response in Plants," J. Bacteriol., 174(21):6878-85 (1992).
Bonas, U., "hrp Genes of Phytopathogenic Bacteria," Current Topics in Microbio., 192:79-98 (1994).
Arlat et al., "PopA1, A Protein Which Induces a Hypersensitivity-Like Response on Specific Protein Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum," The EMBO J., 13(3):543-53 (1994).
Kessmann et al., "Induction of Systemic Acquired Disease Resistance in Plants by Chemicals," Ann. Rev. Phytopathol., 32:439-59 (1994).
Kelman, A., "The Relationship of Pathogenicity in Pseudomonas solanacearum To Colony Appearance on a Tetrazolium Medium," Phytopathology, 44:693-95 (1954).
Winstead et al., "Inoculation Techniques For Evaluating Resistance to Pseudomonas solanacearum," Phytopathology, 42:628-34 (1952).
Ahl et al., "Iron Bound-Siderophores, Cyanic Acid, and Antibiotics Involved in Suppression of Thielaviopsis basiocola by a Pseudomonas fluorescens Strain," J. Phytopathology, 116:121-34 (1986).
Anderson et al., "Responses of Bean to Root Colonization with Pseudomonas putida in a Hydroponic System," Phytopathology, 75(9):992-95 (1985).
Gardner et al., "Growth Promotion and Inhibition by Antibiotic-Producing Fluorescent Pseudomonads on Citrus Roots," Plant and Soil, 77:103-13 (1984).
Kloepper,J.W., "Effect of Seed Piece Inoculation with Plant Growth-Promoting Rhizobacteria on Populations of Erwinia carotovora on Potato Roots and In Daughter Tubers," Phytopathology, 73(2):217-19 (1983).
Atkinson et al., "The Hypersensitive Reaction of Tobacco to Pseudomonas syringae pv. pisi," Plant Physiol., 79:843-47 (1985).
Huynh et al., "Bacterial Blight of Soybean: Regulation of a Pathogen Gene Determinig Host Cultivar Specificity," Science, 245:1374-77 (1986).
Kloepper et al., "Plant Growth-Promoting Rhizobacteria on Canola (Rapeseed)," Plant Disease, 72(1):42-6 (1988).
Kloepper et al., "Enhanced Plant Growth by Siderophores Produced by Plant Growth-Promoting Rhizobacteria," Nature, 286:885-86 (1980).
Kloepper et al., "Pseudomonas Siderophores: A Mechanism Explaining Disease-Suppressive Soils," Current Microbiology, 4:317-20 (1980).
Kloepper et al., "Emergence-Promoting Rhizobacteria; Description and Implications for Agriculture," In: Iron, Siderophores, and Plant Disease, Swinborne (ed), Plenum, NY, 155-64 (1986).
Kloepper et al., "Relationships of in vitro Antibiosis of Plant Growth-Promoting Rhizobacteria to Plant Growth and the Displacement of Root Microflora," Phytopathology, 71(10):1020-24 (1981).
Kloepper et al., "Effects of Rhizosphere Colonization by Plant Growth-Promoting Rhizobacteria on Potato Plant Development and Yield," Phytopathology, 70(11):1078-82 (1980).
Kloepper et al., "Plant Growth Promotion Mediated by Rhizosphere Bacterial Colonizers," In: The Rhizosphere and Plant Growth, -315-32, Keister et al. (eds), pp. 315-326 (1991).
Lifshitz et al., "Growth Promotion of Canola (rapeseed) Seedlings by a Strain of Pseudomonas putida Under Gnotobiotic Conditions," Conditions, Microbiol. 33:390-95 (1987).
Loper et al., "Influence of Bacterial Sources of Indole-3-acetic Acid on Root Elongation of Sugar Beet," Phytopathology, 76(4):386-89 (1986).
Schroth et al., "Disease-Suppressive Soil and Root-Colonizing Bacteria," Science, 216:1376-81 (1982).
Stutz et al., "Naturally Occurring Fluorescent Pseudomonads Involved Suprpession of Black Root Rot of Tobacco," Phytopathology, 76(2):181-85 (1986).
Lindgren et al., "Gene Cluster of Pseudomonas syringae pv. phaseolicola Controls Pathogenicity of Bean Plants and Hypersensitivity on Nonhost Plants," J. Bacteriol., 168(2):512-22 (1986).
Bauer et al., "Cloning of a Gene from Erwinia Amylovora Involved in Induction of Hypersensitivity and Pathogenicity," Plant Pathogenic Bacteria, Proceedings of the Sixth International Conference on Plant Pathogenic Bacteria, Maryland, pp. 425-29 (1987).
Wei et al., "Induction of Systemic Resistance of Cucumber to Colletotrichum orbiculare by Select Strains of Plant Growth-Promoting Rhizobacteria," Phytopathology, 81:1508-12 (1991).
Wei et al., "Induction of Systemic Resistance with Seed Treatment by PGPR Strains," pp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Insect control with a hypersensitive response elicitor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Insect control with a hypersensitive response elicitor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Insect control with a hypersensitive response elicitor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2135489

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.