Input current shaping technique and low pin count for pfc-pwm bo

Electricity: power supply or regulation systems – In shunt with source or load – Using choke and switch across source

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

323207, 363 89, G05F 170, G05F 1613

Patent

active

057421510

ABSTRACT:
An integrated circuit controller for power factor correction circuit that provides unity power factor by sensing only a current in the power factor correction circuit and a dc supply voltage. The power factor correction circuit is coupled to a circuit for generating the dc supply voltage. Thus, the dc supply voltage is representative of the regulated output voltage of the power factor correction circuit. The dc supply voltage is sensed and integrated over each clock cycle and compared to an inverted and amplified version of the sensed current for controlling operation of the power factor correction circuit. By sensing the dc supply voltage, rather than the output voltage of the power factor correction circuit, the integrated circuit requires fewer pins. In a preferred embodiment, the integrated circuit also includes a pulse width modulation controller circuit. Because a single clock signal is utilized for performing both leading edge modulation in the power factor correction circuit and trailing edge modulation in the pulse width modulation circuit, fewer pins are required. Therefore, the integrated circuit controls the power factor correction circuit and the pulse width modulation circuit while being contained within an eight-pin integrated circuit.

REFERENCES:
patent: 3294981 (1966-12-01), Bose
patent: 3603809 (1971-09-01), Uchiyama
patent: 3660753 (1972-05-01), Judd et al.
patent: 3883756 (1975-05-01), Dragon
patent: 4311954 (1982-01-01), Capel
patent: 4392103 (1983-07-01), O'Sullivan et al.
patent: 4407588 (1983-10-01), Arichi et al.
patent: 4437146 (1984-03-01), Carpenter
patent: 4456872 (1984-06-01), Froeschle
patent: 4529927 (1985-07-01), O'Sullivan et al.
patent: 4651231 (1987-03-01), Douglas, Jr.
patent: 4672303 (1987-06-01), Newton
patent: 4672518 (1987-06-01), Murdock
patent: 4677366 (1987-06-01), Wilkinson et al.
patent: 4691159 (1987-09-01), Ahrens et al.
patent: 4731574 (1988-03-01), Melbert
patent: 4736151 (1988-04-01), Dishner
patent: 4761725 (1988-08-01), Henze
patent: 4841220 (1989-06-01), Tabisz et al.
patent: 4845420 (1989-07-01), Oshizawa et al.
patent: 4920309 (1990-04-01), Szepesi
patent: 4929882 (1990-05-01), Szepesi
patent: 4940929 (1990-07-01), Williams
patent: 4941080 (1990-07-01), Sieborger
patent: 4947309 (1990-08-01), Jonsson
patent: 4975823 (1990-12-01), Rilly et al.
patent: 5028861 (1991-07-01), Pace et al.
patent: 5034873 (1991-07-01), Feldtkeller
patent: 5138249 (1992-08-01), Capel
patent: 5146399 (1992-09-01), Gucyski
patent: 5278490 (1994-01-01), Smedley
patent: 5359281 (1994-10-01), Barrow et al.
patent: 5412308 (1995-05-01), Brown
patent: 5414341 (1995-05-01), Brown
patent: 5434767 (1995-07-01), Bartarseh et al.
patent: 5440473 (1995-08-01), Ishii et al.
patent: 5450000 (1995-09-01), Olsen
patent: 5457621 (1995-10-01), Munday et al.
patent: 5457622 (1995-10-01), Arakawa
patent: 5461302 (1995-10-01), Garcia et al.
patent: 5479089 (1995-12-01), Lee
patent: 5481178 (1996-01-01), Wilcox et al.
patent: 5485361 (1996-01-01), Sokal
patent: 5491445 (1996-02-01), Moller et al.
patent: 5502370 (1996-03-01), Hall et al.
patent: 5532577 (1996-07-01), Doluca
patent: 5552695 (1996-09-01), Schwartz
patent: 5565761 (1996-10-01), Hwang
patent: 5568041 (1996-10-01), Hesterman
patent: 5592071 (1997-01-01), Brown
patent: 5592128 (1997-01-01), Hwang
patent: 5610502 (1997-03-01), Tallant, II et al.
patent: 5617306 (1997-04-01), Lai et al.
patent: 5627460 (1997-05-01), Bazinet et al.
"Nonlinear-Carrier Control for High Power Factor Boost Rectifiers Based on Flyback, Cuk or Sepic Converters", Applied Power Electronics Conf., pp. 814-820, 1996.
Nonlinear-Carrier Control for High Power Factor Boost Rectifiers, D. Maksimovic, Y. Jang, R. Erikson, Applied Power Electronics Conf., pp. 635-641, 1995.
"ML4863 High Efficiency Flyback Controller", Micro Linear Corporation, Feb. 1995 pp. 1-7.
"ML4863EVAL User's Guide High Efficiency Flyback Controller", Micro Linear Corporation, Feb. 1995 pp. 1-5.
"Off-Line and One-Cell IC Converters Up Efficiency", Frank Goodenough, Electronic Design, pp. 55-56, 58, 60, 62-64, Jun. 27, 1994.
"Designing with hysteretic current-mode control", Gedaly Levin and Kieran O'Malley, Cherry Semi-Conductor Corp., EDN, pp. 95-96, 98, 100-102, Apr. 28, 1994.
"Analysis of the Flyback Converter Operating in Current-Mode Pulse-Frequency Modulation", Urs Mader and Kit Sum, High Frequency Power Conversion, Apr. 17, 1994.
"Step-Up/Step Down Converters Power Small Portable Systems", Bruce D. Moore, EDN, pp. 79-84, Feb. 3, 1994.
"ML4861 Low Voltage Boost Regulator", Micro Linear Corporation, Jun. 1993 5 pages.
"ML4821 Power Factor Controller", Micro Linear Corporation, Jan. 1992 pp. 119-127.
"Application Note 16", Theory and Application of the ML4821 Average Current Mode PFC Controller, Micro Linear Corporation, Jan. 1992 pp. 102-119.
"ML 4824 Power Factor Correction and PWM Controller Combo," Micro Linear Corporation, May 1997. pp. 1-16.
"11. Variable Frequency Converters," K. Kit Sum, pp. 96-97, 134-135, 1993.
"3.3V/5V/Adjustable Output, Step-Up, DC--DC Converters," Maxim Integrated Products, pp. 1-8, Jun. 1993.
"ML4821EVAL Average Current PFC Controller Evaluation Kit," Micro Linear Corporation, pp. 6-127, Jul. 1992.
"ML4821 Power Factor Controller," Micro Linear Corporation, pp. 1-12, May 1997.
"Small-Signal High-Frequency Analysis of the Free-Running Current-Mode-Controlled Converter," Richard Redl, pp. 897-906, IEEE, 1991.
"Low-Voltage-Input, 3V/3.3V/5V/Adjustable-Output, Step-Up DC--DC Converters," Maxim Integrated Products, pp. 4-189 to 4-191 (no date).
"LT1073 Micropower DC--DC Converter Adjustable and Fixed 5V, 12V" Linear Technology, pp. 4-174 to 4-189, 4-192, (no date).
"Application Note 30," Linear Technology, p. AN30-42, (no date).
"System-Engineered Portable Power Supplies Marry Improved Efficiency And Lower Cost," Bruce D. Moore, Maxim Integrated Products (no date).
"ML4823 High Frequency Power Supply Controller," Micro Linear Corporation, pp. 1-8, Dec. 1994 (Preliminary).
"CD54/74HC 4046A, CD54/74HCT 4046A Technical Data," File No. 1854, RCA, (no date).
"ML4863 High Efficiency Battery Pack Converter," Micro Linear Corporation, p.1, Jun. 1994 (Preliminary).
"ML4880 Portable PC/PCMCIA Power Controller," Micro Linear Corporation, p.1, Oct. 1995 (Preliminary).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Input current shaping technique and low pin count for pfc-pwm bo does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Input current shaping technique and low pin count for pfc-pwm bo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Input current shaping technique and low pin count for pfc-pwm bo will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2061121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.